Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
BMC Microbiol ; 12: 90, 2012 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-22646308

RESUMEN

BACKGROUND: Drug resistance displays a problem for the therapy of Mycobacterium tuberculosis infections. For molecular resistance testing, it is essential to have precise knowledge on genomic variations involved in resistance development. However, data from high-incidence settings are only sparely available. Therefore we performed a systematic approach and analyzed a total of 97 M. tuberculosis strains from previously treated patients in Sierra Leone for mutations in katG, rpoB, rrs, rpsL, gidB, embB, pncA and where applicable in inhA and ahpC. Of the strains investigated 50 were either mono- or poly-resistant to isoniazid, rifampin, streptomycin, ethambutol and pyrazinamide or MDR and 47 fully susceptible strains served as controls. RESULTS: The majority of isoniazid and rifampin resistant strains had mutations in katG315 (71.9%) and rpoB531 (50%). However, rpoB mutations in codons 511, 516 and 533 were also detected in five rifampin susceptible strains. MIC determinations revealed low-level rifampin resistance for those strains. Thus, the sensitivity and specificity of sequencing of katG for detection of drug resistance were 86.7% and 100% and for sequencing of rpoB 100% and 93.8%, respectively.Strikingly, none of the streptomycin resistant strains had mutations in rrs, but 47.5% harboured mutations in rpsL. Further changes were detected in gidB. Among ethambutol resistant strains 46.7% had mutations at embB306. Pyrazinamide resistant strains displayed a variety of mutations throughout pncA. The specificities of sequencing of rpsL, embB and pncA for resistance detection were high (96-100%), whereas sensitivities were lower (48.8%, 73.3%, 70%). CONCLUSIONS: Our study reveals a good correlation between data from molecular and phenotypic resistance testing in this high-incidence setting. However, the fact that particular mutations in rpoB are not linked to high-level resistance is challenging and demonstrates that careful interpretation of molecular resistance assays is mandatory. In addition, certain variations, especially in gidB, appear to be phylogenetically informative polymorphisms rather than markers for drug resistance.


Asunto(s)
Antituberculosos/farmacología , Farmacorresistencia Bacteriana , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/genética , Análisis de Secuencia de ADN/métodos , Tuberculosis/microbiología , Proteínas Bacterianas/genética , ADN Bacteriano/química , ADN Bacteriano/genética , Genotipo , Humanos , Incidencia , Pruebas de Sensibilidad Microbiana/métodos , Mycobacterium tuberculosis/aislamiento & purificación , Sensibilidad y Especificidad , Sierra Leona/epidemiología , Tuberculosis/epidemiología
2.
BMC Microbiol ; 8: 103, 2008 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-18578864

RESUMEN

BACKGROUND: Among tuberculosis (TB) high incidence regions, Sub-Saharan Africa is particularly affected with approx. 1.6 million new cases every year. Besides this dramatic situation, data on the diversity of Mycobacterium tuberculosis complex (MTBC) strains causing this epidemic in this area are only sparsely available. Here we analyzed the population structure of strains from Sierra Leone with a special focus on the prevalence of M. africanum. RESULTS: A total of 97 strains isolated from smear positive cases registered for re-treatment in the Western Area and Kenema districts in years 2003/2004 were investigated by susceptibility testing (first line drugs) and molecular typing (IS6110 fingerprinting, spoligotyping, and MIRU-VNTR typing). Among the strains analyzed, 32 were resistant to isoniazid, and 11 were multidrug resistant (at least resistant to isoniazid and rifampin). The population diversity was high with two previously described M. africanum lineages (West African-1, n = 6; West African-2, n = 17) and seven M. tuberculosis lineages (Haarlem, n = 14; LAM, n = 15; EAI, n = 4; Beijing, n = 4; S-type, n = 4, X-type, n = 1; Cameroon, n = 4). Furthermore, two new M. tuberculosis genotypes Sierra Leone-1 (n = 7) and -2 (n = 10) were found. Strain classification according to a 7 bp deletion in pks1/15 revealed that the majority of M. tuberculosis strains belonged to the Euro American lineage (66 out of 74). CONCLUSION: Resistance rates in Sierra Leone have reached an alarming level. The population structure of MTBC strains shows an intriguing diversity raising the question of possible consequences for TB epidemic and for the introduction of new diagnostic tests or treatment strategies in West Africa.


Asunto(s)
Variación Genética , Mycobacterium/clasificación , Mycobacterium/aislamiento & purificación , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Tuberculosis Pulmonar/microbiología , Antituberculosos/farmacología , Dermatoglifia del ADN , ADN Intergénico/genética , Farmacorresistencia Bacteriana Múltiple , Humanos , Repeticiones de Minisatélite , Mycobacterium/efectos de los fármacos , Mycobacterium/genética , Estudios Retrospectivos , Sierra Leona/epidemiología , Tuberculosis Resistente a Múltiples Medicamentos/epidemiología , Tuberculosis Pulmonar/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA