Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 206
Filtrar
Más filtros

Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(24): e2216574120, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37276415

RESUMEN

The immune deficiency (IMD) pathway is critical for elevating host immunity in both insects and crustaceans. The IMD pathway activation in insects is mediated by peptidoglycan recognition proteins, which do not exist in crustaceans, suggesting a previously unidentified mechanism involved in crustacean IMD pathway activation. In this study, we identified a Marsupenaeus japonicus B class type III scavenger receptor, SRB2, as a receptor for activation of the IMD pathway. SRB2 is up-regulated upon bacterial challenge, while its depletion exacerbates bacterial proliferation and shrimp mortality via abolishing the expression of antimicrobial peptides. The extracellular domain of SRB2 recognizes bacterial lipopolysaccharide (LPS), while its C-terminal intracellular region containing a cryptic RHIM-like motif interacts with IMD, and activates the pathway by promoting nuclear translocation of RELISH. Overexpressing shrimp SRB2 in Drosophila melanogaster S2 cells potentiates LPS-induced IMD pathway activation and diptericin expression. These results unveil a previously unrecognized SRB2-IMD axis responsible for antimicrobial peptide induction and restriction of bacterial infection in crustaceans and provide evidence of biological diversity of IMD signaling in animals. A better understanding of the innate immunity of crustaceans will permit the optimization of prevention and treatment strategies against the arising shrimp diseases.


Asunto(s)
Crustáceos , Animales , Crustáceos/genética , Crustáceos/inmunología , Crustáceos/metabolismo , Crustáceos/microbiología , Drosophila melanogaster , Lipopolisacáridos , Receptores de Reconocimiento de Patrones/genética , Receptores de Reconocimiento de Patrones/metabolismo , Regulación hacia Arriba , Vibrio , Transducción de Señal , Humanos
2.
Clin Orthop Relat Res ; 482(2): 375-383, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37606954

RESUMEN

BACKGROUND: Infection remains a serious clinical concern in patients with open fractures, despite timely antibiotic administration and surgical debridement. Soft tissue and periosteal stripping may alter local tissue homeostasis and antibiotic pharmacokinetics in the injured limb. The tissue (interstitial) concentration of intravenously administered antibiotics at an open fracture site has not been characterized using direct sampling techniques. QUESTION/PURPOSE: We performed this study to evaluate the concentration and pharmacokinetics of intravenously delivered cefazolin at an open fracture site after surgical debridement. METHODS: Twelve patients with an open fracture distal to the knee who presented at a regional Level I trauma center were approached for enrollment in this nonrandomized, observational study. Of the 12 patients, eight adults (one female, seven male) with a median age of 32 years (range 23 to 51 years) were enrolled and underwent successful sample collection for analysis. Three patients had incomplete datasets because of equipment malfunction and one elected not to participate. Seven patients had open tibia fractures, and one patient had an open fibula fracture associated with a closed tibia fracture. There were six Gustilo-Anderson Type II injuries and two Type IIIA injuries. Empiric antibiotics were administered in the prehospital setting or in the emergency department according to institutional protocol. When patients were taken to the operating room, a 2-g intravenous dose of cefazolin was administered. After surgical debridement, fracture stabilization, and wound closure, a microdialysis catheter was placed transdermally into the injury zone (within 5 cm of the fracture site) and a second catheter was placed in the contralateral uninjured (control) limb. Additional doses of cefazolin were administered every 8 hours postoperatively. Baseline and periodic interstitial fluid and whole blood (plasma) samples were collected in the operating room and at prespecified times for 24 hours postoperatively. Free cefazolin in the interstitial fluid and plasma samples were analyzed by ultra-high-performance liquid chromatography using C 18 column separation with quadrupole time-of-flight mass spectrometry detection. Data from the second postoperative dose of cefazolin were used to characterize pharmacokinetic parameters through a noncompartmental analysis using time-concentration curves of free cefazolin and assuming first-order elimination. For pharmacodynamic analyses, the modal cefazolin minimum inhibitory concentration (MIC) of Staphylococcus aureus (1 µg/mL) was used. RESULTS: With the samples available, no difference was observed in the median free cefazolin exposure over 24 hours ( f area under the curve [AUC] 0→24hrs ) between injured limbs (352 µg∙hr/mL [IQR 284 to 594 µg∙hr/mL]) and uninjured limbs (341 µg∙hr/mL [IQR 263 to 438 µg∙hr/mL]; p = 0.64). The median time to achieve the maximum concentration of free cefazolin ( f T max ) for injured limbs was delayed (2.7 hours [IQR 2.2 to 3.1 hours]) compared with control limbs (1.7 hours [IQR 1.2 to 2.0 hours]; p = 0.046). The time to the maximum concentration for plasma was not different from that of control limbs (p = 0.08). The time the cefazolin concentration was above the modal S. aureus MIC (T > MIC) in the injured and control limbs over 24 hours was 100% (IQR 100% to 100%) and 100% (IQR 97% to 100%), respectively. CONCLUSION: These preliminary findings suggest that current prophylactic cefazolin dosing regimens result in successful antibiotic delivery to the traumatized limb in moderately severe open fractures. Although cefazolin delivery to open-fracture wound beds was delayed compared with healthy tissues, the cefazolin concentration was sustained above the European Union Committee Antimicrobial Susceptibility Testing modal MIC for S. aureus , demonstrating a high likelihood of a prophylactic antimicrobial environment at an open fracture site with this empiric antimicrobial regimen. Importantly, patients in this analysis had Gustilo-Anderson Types II and IIIA injuries. Further research with a larger patient cohort is needed to determine whether antibiotic delivery to traumatized soft tissues in patients with higher-grade open fractures (Gustilo-Anderson Types IIIB and IIIC) demonstrates similar pharmacokinetic characteristics. LEVEL OF EVIDENCE: Level II, therapeutic study.


Asunto(s)
Fracturas Abiertas , Fracturas de la Tibia , Adulto , Humanos , Masculino , Femenino , Adulto Joven , Persona de Mediana Edad , Cefazolina , Fracturas Abiertas/complicaciones , Infección de la Herida Quirúrgica/etiología , Staphylococcus aureus , Resultado del Tratamiento , Estudios Retrospectivos , Antibacterianos , Fracturas de la Tibia/cirugía , Fracturas de la Tibia/complicaciones , Extremidad Inferior
3.
Pediatr Res ; 93(4): 948-952, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-35739259

RESUMEN

BACKGROUND: Angiotensin-converting enzyme 2 (ACE2) is the receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which causes COVID-19. Viral entry requires ACE2 and transmembrane protease serine 2 (TMPRSS2). Transcriptomic studies showed that children display lower ACE2 than adults, though gene expression levels do not always correlate with protein levels. We investigated the effect of age on ACE2 and TMPRSS2 protein expression in alveolar type II (AT2) cells in the lungs of children compared to adults. We also analysed the ratio of Ang-(1-7) to Ang II as a surrogate marker of ACE2 activity in the subjects' lung parenchyma. METHODS: Ang II and Ang-(1-7) levels and ACE2 and TMPRSS2 protein expression were measured by radioimmunoassay and immunohistochemistry, respectively. RESULTS: The amount of ACE2-expressing AT2 cells and ACE2 protein content were lower in children than in adults. Ang II levels were higher in children compared to adults and inversely correlated with the amount of ACE2-expressing AT2 cells. Children presented lower Ang-(1-7)/Ang II ratio than adult suggesting lower ACE2 activity in children. TMPRSS2 protein expression was not influenced by age. CONCLUSIONS: These results expand on previous transcriptomic studies and may partially explain the low susceptibility of children to SARS-CoV-2 infection. CATEGORY OF STUDY: Clinical original research IMPACT: Children display lower ACE2 protein content and activity compared to adults. Ang II levels were higher in children compared to adults and inversely correlated with the amount of ACE2-expressing AT2 cells TMPRSS2 protein expression was not influenced by age. These results expand on previous transcriptomic studies and may partially explain the low susceptibility of children to SARS-CoV-2 infection.


Asunto(s)
COVID-19 , Adulto , Niño , Humanos , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2 , Pulmón , Procesamiento Proteico-Postraduccional
4.
Arch Biochem Biophys ; 732: 109450, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36328152

RESUMEN

The Spf1p protein from Saccharomyces cerevisiae belongs to the family of P5A-ATPases that have recently been shown to protect the endoplasmic reticulum by dislocating misinserted membrane proteins. The loss of function of P5A-ATPases leads to endoplasmic reticulum stress with a pleiotropic phenotype including protein, sterol and metal ion dyshomeostasis. Like other P-ATPases, Spf1p requires Mg2+. We found that free Mg2+ stimulated the Spf1p ATPase activity along a double hyperbolic curve with two components of K1/2 = 14 and 800 µM Ca2+, Mn2+ and Co2+ lowered about 50% of the Spf1p ATPase with relatively low affinity (Ki ∼75 µM) and the activity was fully recovered after metal ion chelation with EGTA. In contrast, low concentrations of Zn2+ and Cd2+decreased the activity to less than 20% and lead to slow irreversible inactivation of the enzyme. After the treatment with Zn2+, Spf1p exhibited a reduced apparent affinity for ATP and formed lower levels of the catalytic phosphoenzyme. The inactivation by Zn2+ occurred preferentially at a pH > 6 and could be prevented by adding either ATP or ADP to the inactivation media. These results suggest that Zn2+ inactivated Spf1p by binding to amino acid residues from the nucleotide binding-phosphorylation domains that are protonated at lower pH. Alternatively the binding of nucleotides may indirectly compete with a conformational change leading to the Zn2+-inactive form of the enzyme. Exposure of yeast cells to high concentrations of Zn2+ led to changes similar to the phenotype characteristic of the Spf1Δ cells. Altogether, our data, point out a possible mechanism by which the inhibition of P5A-ATPases could potentiate metal ion-induced ER stress and proteotoxicity.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Adenosina Trifosfatasas , Proteínas de Saccharomyces cerevisiae , Zinc , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Transportadoras de Casetes de Unión a ATP/metabolismo , Iones , Fosforilación , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Zinc/farmacología , Metales/farmacología
5.
Bioorg Med Chem ; 72: 116974, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-36108470

RESUMEN

Human galectin 3 (Gal-3) has been implicated to play important roles in different biological recognition processes such as tumor growth and cancer metastasis. High-affinity Gal-3 ligands are desirable for functional studies and as inhibitors for potential therapeutic development. We report here a facile synthesis of ß-cyclodextrin (CD)-based Tn and TF antigen-containing multivalent ligands via a click reaction. Binding studies indicated that the synthetic multivalent glycan ligands demonstrated a clear clustering effect in binding to human Gal-3, with up to 153-fold enhanced relative affinity in comparison with the monomeric glycan ligand. The GalNAc (Tn antigen) containing heptavalent ligand showed the highest affinity for human Gal-3 among the synthetic ligands tested, with an EC50 of 1.4 µM in binding to human Gal-3. A cell-based assay revealed that the synthetic CD-based multivalent ligands could efficiently inhibit Gal-3 binding to human airway epithelial cells, with an inhibitory capacity consistent with their binding affinity measured by SPR. The synthetic cyclodextrin-based ligands described in this study should be valuable for functional studies of human Gal-3 and potentially for therapeutic applications.


Asunto(s)
Ciclodextrinas , beta-Ciclodextrinas , Galectina 3/metabolismo , Humanos , Ligandos , Unión Proteica , beta-Ciclodextrinas/farmacología
6.
Educ Adm Q ; 58(5): 679-692, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36471859

RESUMEN

In lieu of writing a separate introduction to this special issue, the three guest editors invited the EAQ Editor-In-Chief to join them as a coauthor in their introduction. López, agreed but took a few liberties with the draft that was provided to him by the guest editors. The result is an imagined "conversation" that did not actually take place but is highly probable given the deep admiration and mutual respect the four individuals have for each other both as individuals and as scholars. This introductory conversation situates the theme of the special issue within the larger scope of educational leadership while simultaneously troubling the role of school leaders as agents of Coloniality.

7.
J Gen Virol ; 102(11)2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34726588

RESUMEN

Viral metagenomic studies have enabled the discovery of many unknown viruses and revealed that viral communities are much more diverse and ubiquitous than previously thought. Some viruses have multiple genome components that are encapsidated either in separate virions (multipartite viruses) or in the same virion (segmented viruses). In this study, we identify what is possibly a novel bipartite plant-associated circular single-stranded DNA virus in a wild prickly pear cactus, Opuntia discolor, that is endemic to the Chaco ecoregion in South America. Two ~1.8 kb virus-like circular DNA components were recovered, one encoding a replication-associated protein (Rep) and the other a capsid protein (CP). Both of the inferred protein sequences of the Rep and CP are homologous to those encoded by members of the family Geminiviridae. These two putatively cognate components each have a nonanucleotide sequence within a likely hairpin structure that is homologous to the origins of rolling-circle replication (RCR), found in diverse circular single-stranded DNA viruses. In addition, the two components share similar putative replication-associated iterative sequences (iterons), which in circular single-stranded DNA viruses are important for Rep binding during the initiation of RCR. Such molecular features provide support for the possible bipartite nature of this virus, which we named utkilio virus (common name of the Opuntia discolor in South America) components A and B. In the infectivity assays conducted in Nicotiana benthamiana plants, only the A component of utkilio virus, which encodes the Rep protein, was found to move and replicate systemically in N. benthamiana. This was not true for component B, for which we did not detect replication, which may have been due to this being a defective molecule or because of the model plants (N. benthamiana) used for the infection assays. Future experiments need to be conducted with other plants, including O. discolor, to understand more about the biology of these viral components.


Asunto(s)
Virus ADN/aislamiento & purificación , ADN Circular/genética , ADN Viral/genética , Geminiviridae/genética , Opuntia/virología , Enfermedades de las Plantas/virología , Proteínas Virales/genética , Secuencia de Aminoácidos , Secuencia de Bases , Virus ADN/clasificación , Virus ADN/genética , Geminiviridae/clasificación , Geminiviridae/aislamiento & purificación , Genoma Viral , Filogenia
8.
Biochem Biophys Res Commun ; 563: 113-118, 2021 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-34087682

RESUMEN

The yeast Spf1p P5A-ATPase actively translocates membrane spanning peptides of mislocalized proteins from the endoplasmic reticulum. Loss of Spf1p function causes a pleiotropic ER stress-phenotype associated with alterations of homeostasis of metal ions, lipids, protein folding, glycosylation, and membrane insertion. A unique characteristic of P5A-ATPases is the presence of an extended insertion which was called the "arm-like" domain connecting the phosphorylation domain (P) with transmembrane segment M5 near the peptidyl-substrate binding pocket. Here we have constructed and characterized a Δarm mutant of Spf1p lacking a segment of 117 amino acids of the "arm-like" domain. The Δarm mutant was capable of hydrolyzing ATP at maximal rates of 50% of that of the wild type enzyme. With the non-nucleotide substrate analog pNPP, the hydrolytic activity of the mutant dropped to 10%. The mutant showed an apparent affinity for ATP similar to the wild type. When incubated with ATP the Δarm mutant produced a lower level of the catalytic phosphoenzyme in amounts proportionate to the ATPase activity. These results indicate that the "arm-like" domain is not essential for hydrolytic activity and suggest that it is needed for the stabilization of Spf1p in a phosphorylation-ready conformation.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Adenosina Trifosfatasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Hidrólisis , Fosforilación
9.
An Acad Bras Cienc ; 93(2): e20190429, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34133528

RESUMEN

We study the geographical variation of the skull in the cavies Microcavia australis and M. maenas and its association with environmental variables. We tested four hypotheses previously proposed to explain the geographic patterns of morphological variation i) heat conservation; ii) heat dissipation; iii) primary productivity and iv) seasonality. We used 16 cranial measurements taken from 180 individuals. We analyzed the spatial variation in cranial morphology through Generalized Additive Models. Both species showed a north-south clinal gradient in skull size (increasing towards colder, less seasonal environments, with lower summer rainfalls in M. australis and towards warmer and seasonal environments in M. maenas). Microcavia australis presented greater ecomorphological variability than M. maenas, in agreement with its wider distribution and occurrence in more diverse environments. Also, the length of tympanic bullae in M. australis was larger towards its northern distributional range (associated to smaller skulls), and smaller to the south (associated to larger skulls). Overall, the distributional range of both species coincided with unproductive environments, where temperature represents a limiting factor and, together with rainfall, might determine the observed morphological patterns.


Asunto(s)
Roedores , Cráneo , Animales , Geografía , Cobayas , Estaciones del Año
10.
Glycobiology ; 30(11): 895-909, 2020 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-32280962

RESUMEN

Pregnancy-specific beta 1 glycoprotein (PSG1) is secreted from trophoblast cells of the human placenta in increasing concentrations as pregnancy progresses, becoming one of the most abundant proteins in maternal serum in the third trimester. PSG1 has seven potential N-linked glycosylation sites across its four domains. We carried out glycomic and glycoproteomic studies to characterize the glycan composition of PSG1 purified from serum of pregnant women and identified the presence of complex N-glycans containing poly LacNAc epitopes with α2,3 sialyation at four sites. Using different techniques, we explored whether PSG1 can bind to galectin-1 (Gal-1) as these two proteins were previously shown to participate in processes required for a successful pregnancy. We confirmed that PSG1 binds to Gal-1 in a carbohydrate-dependent manner with an affinity of the interaction of 0.13 µM. In addition, we determined that out of the three N-glycosylation-carrying domains, only the N and A2 domains of recombinant PSG1 interact with Gal-1. Lastly, we observed that the interaction between PSG1 and Gal-1 protects this lectin from oxidative inactivation and that PSG1 competes the ability of Gal-1 to bind to some but not all of its glycoprotein ligands.


Asunto(s)
Galectina 1/metabolismo , Polisacáridos/metabolismo , Glicoproteínas beta 1 Específicas del Embarazo/metabolismo , Femenino , Galectina 1/química , Humanos , Ligandos , Polisacáridos/química , Embarazo , Glicoproteínas beta 1 Específicas del Embarazo/química , Glicoproteínas beta 1 Específicas del Embarazo/aislamiento & purificación
11.
Adv Exp Med Biol ; 1204: 169-196, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32152947

RESUMEN

Galectins are a family of ß-galactoside-binding lectins characterized by a unique sequence motif in the carbohydrate recognition domain, and evolutionary and structural conservation from fungi to invertebrates and vertebrates, including mammals. Their biological roles, initially understood as limited to recognition of endogenous ("self") carbohydrate ligands in embryogenesis and early development, dramatically expanded in later years by the discovery of their roles in tissue repair, cancer, adipogenesis, and regulation of immune homeostasis. In recent years, however, evidence has also accumulated to support the notion that galectins can bind ("non-self") glycans on the surface of potentially pathogenic microbes, and function as recognition and effector factors in innate immunity. Thus, this evidence has established a new paradigm by which galectins can function not only as pattern recognition receptors but also as effector factors, by binding to the microbial surface and inhibiting adhesion and/or entry into the host cell, directly killing the potential pathogen by disrupting its surface structures, or by promoting phagocytosis, encapsulation, autophagy, and pathogen clearance from circulation. Strikingly, some viruses, bacteria, and protistan parasites take advantage of the aforementioned recognition roles of the vector/host galectins, for successful attachment and invasion. These recent findings suggest that galectin-mediated innate immune recognition and effector mechanisms, which throughout evolution have remained effective for preventing or fighting viral, bacterial, and parasitic infection, have been "subverted" by certain pathogens by unique evolutionary adaptations of their surface glycome to gain host entry, and the acquisition of effective mechanisms to evade the host's immune responses.


Asunto(s)
Evolución Biológica , Galectinas/química , Galectinas/inmunología , Interacciones Huésped-Patógeno/inmunología , Inmunidad Innata , Animales , Humanos , Fagocitosis , Polisacáridos/inmunología
12.
BMC Evol Biol ; 19(1): 146, 2019 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-31324143

RESUMEN

BACKGROUND: Antioxidative enzymes contribute to a parasite's ability to counteract the host's intracellular killing mechanisms. The facultative intracellular oyster parasite, Perkinsus marinus, a sister taxon to dinoflagellates and apicomplexans, is responsible for mortalities of oysters along the Atlantic coast of North America. Parasite trophozoites enter molluscan hemocytes by subverting the phagocytic response while inhibiting the typical respiratory burst. Because P. marinus lacks catalase, the mechanism(s) by which the parasite evade the toxic effects of hydrogen peroxide had remained unclear. We previously found that P. marinus displays an ascorbate-dependent peroxidase (APX) activity typical of photosynthetic eukaryotes. Like other alveolates, the evolutionary history of P. marinus includes multiple endosymbiotic events. The discovery of APX in P. marinus raised the questions: From which ancestral lineage is this APX derived, and what role does it play in the parasite's life history? RESULTS: Purification of P. marinus cytosolic APX activity identified a 32 kDa protein. Amplification of parasite cDNA with oligonucleotides corresponding to peptides of the purified protein revealed two putative APX-encoding genes, designated PmAPX1 and PmAPX2. The predicted proteins are 93% identical, and PmAPX2 carries a 30 amino acid N-terminal extension relative to PmAPX1. The P. marinus APX proteins are similar to predicted APX proteins of dinoflagellates, and they more closely resemble chloroplastic than cytosolic APX enzymes of plants. Immunofluorescence for PmAPX1 and PmAPX2 shows that PmAPX1 is cytoplasmic, while PmAPX2 is localized to the periphery of the central vacuole. Three-dimensional modeling of the predicted proteins shows pronounced differences in surface charge of PmAPX1 and PmAPX2 in the vicinity of the aperture that provides access to the heme and active site. CONCLUSIONS: PmAPX1 and PmAPX2 phylogenetic analysis suggests that they are derived from a plant ancestor. Plant ancestry is further supported by the presence of ascorbate synthesis genes in the P. marinus genome that are similar to those in plants. The localizations and 3D structures of the two APX isoforms suggest that APX fulfills multiple functions in P. marinus within two compartments. The possible role of APX in free-living and parasitic stages of the life history of P. marinus is discussed.


Asunto(s)
Antioxidantes/metabolismo , Ascorbato Peroxidasas/metabolismo , Catalasa/metabolismo , Parásitos/enzimología , Fotosíntesis , Secuencia de Aminoácidos , Animales , Ascorbato Peroxidasas/química , Ascorbato Peroxidasas/genética , Ascorbato Peroxidasas/aislamiento & purificación , Peróxido de Hidrógeno/metabolismo , Cinética , Modelos Moleculares , Parásitos/genética , Filogenia , Homología Estructural de Proteína , Fracciones Subcelulares/metabolismo
13.
Glycobiology ; 29(5): 419-430, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30834446

RESUMEN

Galectins, highly conserved ß-galactoside-binding lectins, have diverse regulatory roles in development and immune homeostasis and can mediate protective functions during microbial infection. In recent years, the role of galectins in viral infection has generated considerable interest. Studies on highly pathogenic viruses have provided invaluable insight into the participation of galectins in various stages of viral infection, including attachment and entry. Detailed mechanistic and structural aspects of these processes remain undetermined. To address some of these gaps in knowledge, we used Zebrafish as a model system to examine the role of galectins in infection by infectious hematopoietic necrosis virus (IHNV), a rhabdovirus that is responsible for significant losses in both farmed and wild salmonid fish. Like other rhabdoviruses, IHNV is characterized by an envelope consisting of trimers of a glycoprotein that display multiple N-linked oligosaccharides and play an integral role in viral infection by mediating the virus attachment and fusion. Zebrafish's proto-typical galectin Drgal1-L2 and the chimeric-type galectin Drgal3-L1 interact directly with the glycosylated envelope of IHNV, and significantly reduce viral attachment. In this study, we report the structure of the complex of Drgal1-L2 with N-acetyl-d-lactosamine at 2.0 Å resolution. To gain structural insight into the inhibitory effect of these galectins on IHNV attachment to the zebrafish epithelial cells, we modeled Drgal3-L1 based on human galectin-3, as well as, the ectodomain of the IHNV glycoprotein. These models suggest mechanisms for which the binding of these galectins to the IHNV glycoprotein hinders with different potencies the viral attachment required for infection.


Asunto(s)
Galectinas/química , Galectinas/metabolismo , Glicoproteínas/química , Virus de la Necrosis Hematopoyética Infecciosa/química , Proteínas de Pez Cebra/química , Proteínas de Pez Cebra/metabolismo , Secuencia de Aminoácidos , Animales , Glicoproteínas/metabolismo , Virus de la Necrosis Hematopoyética Infecciosa/metabolismo , Modelos Moleculares , Alineación de Secuencia , Pez Cebra
14.
PLoS Pathog ; 13(9): e1006626, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28931061

RESUMEN

C-type lectins (CTLs) are characterized by the presence of a C-type carbohydrate recognition domain (CTLD) that by recognizing microbial glycans, is responsible for their roles as pattern recognition receptors in the immune response to bacterial infection. In addition to the CTLD, however, some CTLs display additional domains that can carry out effector functions, such as the collagenous domain of the mannose-binding lectin. While in vertebrates, the mechanisms involved in these effector functions have been characterized in considerable detail, in invertebrates they remain poorly understood. In this study, we identified in the kuruma shrimp (Marsupenaeus japonicus) a structurally novel CTL (MjCC-CL) that in addition to the canonical CTLD, contains a coiled-coil domain (CCD) responsible for the effector functions that are key to the shrimp's antibacterial response mediated by antimicrobial peptides (AMPs). By the use of in vitro and in vivo experimental approaches we elucidated the mechanism by which the recognition of bacterial glycans by the CTLD of MjCC-CL leads to activation of the JAK/STAT pathway via interaction of the CCD with the surface receptor Domeless, and upregulation of AMP expression. Thus, our study of the shrimp MjCC-CL revealed a striking functional difference with vertebrates, in which the JAK/STAT pathway is indirectly activated by cell death and stress signals through cytokines or growth factors. Instead, by cross-linking microbial pathogens with the cell surface receptor Domeless, a lectin directly activates the JAK/STAT pathway, which plays a central role in the shrimp antibacterial immune responses by upregulating expression of selected AMPs.


Asunto(s)
Proteínas de Artrópodos/metabolismo , Crustáceos/metabolismo , Lectinas Tipo C/metabolismo , Transducción de Señal , Animales , Proteínas de Artrópodos/inmunología , Crustáceos/microbiología , ADN Complementario/genética , Quinasas Janus/metabolismo , Lectinas Tipo C/química , Receptores de Reconocimiento de Patrones/metabolismo , Factores de Transcripción STAT/metabolismo , Regulación hacia Arriba
15.
J Zoo Wildl Med ; 49(3): 722-731, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30212319

RESUMEN

The aims of this study were to determine if a propofol constant rate infusion (CRI) in Speke's gazelle, Gazella spekei, would serve as an effective alternative maintenance anesthetic, result in shorter recovery times, and improve anesthetic recovery quality when compared with isoflurane. Eight adult gazelle were enrolled in this complete crossover study with a minimum 3-wk washout period. All gazelle were induced with 10 mg/kg intravenous propofol and maintained with either propofol CRI (0.4 mg/kg/min) or isoflurane (1-3%) for 45 min. Animals were monitored for anesthetic depth and physiologic variables including heart and respiratory rates, oxygen saturation, end-tidal carbon dioxide, indirect blood pressure, and temperature every 5 min. Blood gas samples were analyzed within the first 10 min following anesthetic induction and within the last 10 min of anesthesia. Recovery times were recorded. Recovery quality was classified by a residual ataxia grading scale. Seven gazelle completed the study by undergoing both anesthetic treatments; one female (12 yr old) developed complications 2 days after isoflurane anesthesia, consisting of seizures, azotemia, leukocytosis, hypocalcemia, and hypomagnesemia but was treated successfully. Propofol anesthesia resulted in lower respiratory rates compared with isoflurane and a decrease in respiratory rate over time. Propofol CRI maintained blood pressure values closer to physiologically normal ranges compared with isoflurane for 45 min of anesthesia. Recovery times were comparable between propofol and isoflurane treatments. While individuals receiving propofol had higher residual ataxia scores compared with individuals receiving isoflurane, differences were not clinically important. This study demonstrated that propofol CRI (0.4 mg/kg/min) is an effective maintenance anesthetic agent in healthy adult Speke's gazelle for noninvasive procedures with endotracheal intubation and intermittent positive pressure ventilation.


Asunto(s)
Antílopes , Isoflurano/farmacología , Propofol/farmacología , Anestésicos por Inhalación/administración & dosificación , Anestésicos por Inhalación/efectos adversos , Anestésicos por Inhalación/farmacología , Anestésicos Intravenosos/administración & dosificación , Anestésicos Intravenosos/efectos adversos , Anestésicos Intravenosos/farmacología , Animales , Animales de Zoológico , Estudios Cruzados , Femenino , Isoflurano/administración & dosificación , Isoflurano/efectos adversos , Masculino , Propofol/administración & dosificación , Propofol/efectos adversos , Distribución Aleatoria
16.
J Biol Chem ; 291(14): 7767-73, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26858246

RESUMEN

P5-ATPases are important for processes associated with the endosomal-lysosomal system of eukaryotic cells. In humans, the loss of function of P5-ATPases causes neurodegeneration. In the yeastSaccharomyces cerevisiae, deletion of P5-ATPase Spf1p gives rise to endoplasmic reticulum stress. The reaction cycle of P5-ATPases is poorly characterized. Here, we showed that the formation of the Spf1p catalytic phosphoenzyme was fast in a reaction medium containing ATP, Mg(2+), and EGTA. Low concentrations of Ca(2+)in the phosphorylation medium decreased the rate of phosphorylation and the maximal level of phosphoenzyme. Neither Mn(2+)nor Mg(2+)had an inhibitory effect on the formation of the phosphoenzyme similar to that of Ca(2+) TheKmfor ATP in the phosphorylation reaction was ∼1 µmand did not significantly change in the presence of Ca(2+) Half-maximal phosphorylation was attained at 8 µmMg(2+), but higher concentrations partially protected from Ca(2+)inhibition. In conditions similar to those used for phosphorylation, Ca(2+)had a small effect accelerating dephosphorylation and minimally affected ATPase activity, suggesting that the formation of the phosphoenzyme was not the limiting step of the ATP hydrolytic cycle.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Calcio/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Transportadoras de Casetes de Unión a ATP/genética , Fosforilación/fisiología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
17.
Conserv Biol ; 31(1): 24-29, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27624925

RESUMEN

Research on urban insect pollinators is changing views on the biological value and ecological importance of cities. The abundance and diversity of native bee species in urban landscapes that are absent in nearby rural lands evidence the biological value and ecological importance of cities and have implications for biodiversity conservation. Lagging behind this revised image of the city are urban conservation programs that historically have invested in education and outreach rather than programs designed to achieve high-priority species conservation results. We synthesized research on urban bee species diversity and abundance to determine how urban conservation could be repositioned to better align with new views on the ecological importance of urban landscapes. Due to insect pollinators' relatively small functional requirements-habitat range, life cycle, and nesting behavior-relative to larger mammals, we argue that pollinators put high-priority and high-impact urban conservation within reach. In a rapidly urbanizing world, transforming how environmental managers view the city can improve citizen engagement and contribute to the development of more sustainable urbanization.


Asunto(s)
Abejas , Ciudades , Conservación de los Recursos Naturales , Urbanización , Animales , Biodiversidad , Ecosistema , Insectos , Mamíferos
19.
Biochim Biophys Acta ; 1848(8): 1646-55, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25912790

RESUMEN

P-type ion pumps are membrane transporters that have been classified into five subfamilies termed P1-P5. The ion transported by the P5-ATPases is not known. Five genes named ATP13A1-ATP13A5 that belong to the P5-ATPase group are present in humans. Loss-of-function mutations in the ATP13A2 gene (PARK9, OMIM 610513) underlay a form of Parkinson's disease (PD) known as the Kufor-Rakeb syndrome (KRS), which belongs to the group of syndromes of neurodegeneration with brain iron accumulation (NBIA). Here we report that the cytotoxicity induced by iron exposure was two-fold reduced in CHO cells stably expressing the ATP13A2 recombinant protein (ATP13A2). Moreover, the iron content in ATP13A2 cells was lower than control cells stably expressing an inactive mutant of ATP13A2. ATP13A2 expression caused an enlargement of lysosomes and late endosomes. ATP13A2 cells exhibited a reduced iron-induced lysosome membrane permeabilization (LMP). These results suggest that ATP13A2 overexpression improves the lysosome membrane integrity and protects against the iron-induced cell damage.


Asunto(s)
Cloruros/toxicidad , Compuestos Férricos/toxicidad , Lisosomas/efectos de los fármacos , ATPasas de Translocación de Protón/metabolismo , Citoesqueleto de Actina/efectos de los fármacos , Citoesqueleto de Actina/metabolismo , Animales , Células CHO , Supervivencia Celular/efectos de los fármacos , Cricetulus , Relación Dosis-Respuesta a Droga , Endosomas/efectos de los fármacos , Endosomas/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Membranas Intracelulares/efectos de los fármacos , Membranas Intracelulares/metabolismo , Lisosomas/enzimología , Lisosomas/patología , Mutación , Tamaño de los Orgánulos/efectos de los fármacos , Permeabilidad , ATPasas de Translocación de Protón/genética , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA