Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
PLoS Biol ; 22(2): e3002517, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38422172

RESUMEN

A subpopulation of deeply quiescent, so-called dormant hematopoietic stem cells (dHSCs) resides at the top of the hematopoietic hierarchy and serves as a reserve pool for HSCs. The state of dormancy protects the HSC pool from exhaustion throughout life; however, excessive dormancy may prevent an efficient response to hematological stresses. Despite the significance of dHSCs, the mechanisms maintaining their dormancy remain elusive. Here, we identify CD38 as a novel and broadly applicable surface marker for the enrichment of murine dHSCs. We demonstrate that cyclic adenosine diphosphate ribose (cADPR), the product of CD38 cyclase activity, regulates the expression of the transcription factor c-Fos by increasing the release of Ca2+ from the endoplasmic reticulum (ER). Subsequently, we uncover that c-Fos induces the expression of the cell cycle inhibitor p57Kip2 to drive HSC dormancy. Moreover, we found that CD38 ecto-enzymatic activity at the neighboring CD38-positive cells can promote human HSC quiescence. Together, CD38/cADPR/Ca2+/c-Fos/p57Kip2 axis maintains HSC dormancy. Pharmacological manipulations of this pathway can provide new strategies to improve the success of stem cell transplantation and blood regeneration after injury or disease.


Asunto(s)
ADP-Ribosil Ciclasa 1 , ADP-Ribosa Cíclica , Animales , Humanos , Ratones , Calcio/metabolismo , ADP-Ribosa Cíclica/metabolismo , Células Madre Hematopoyéticas , ADP-Ribosil Ciclasa 1/metabolismo , Inhibidor p57 de las Quinasas Dependientes de la Ciclina/metabolismo
2.
Blood ; 141(20): 2483-2492, 2023 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-36787502

RESUMEN

Hematopoietic stem cells (HSCs) are the ultimate source of blood and immune cells, and transplantation reveals their unique potential to regenerate all blood lineages lifelong. HSCs are considered a quiescent reserve population under homeostatic conditions, which can be rapidly activated by perturbations to fuel blood regeneration. In accordance with this concept, inflammation and loss of blood cells were reported to stimulate the proliferation of HSCs, which is associated with a decline in their transplantation potential. To investigate the contribution of primitive HSCs to the hematopoietic stress response in the native environment, we use fate mapping and proliferation tracking mouse models. Although primitive HSCs were robustly activated by severe myeloablation, they did not contribute to the regeneration of mature blood cells in response to prototypic hematopoietic emergencies, such as acute inflammation or blood loss. Even chronic inflammatory stimulation, which triggered vigorous HSC proliferation, only resulted in a weak contribution of HSCs to mature blood cell production. Thus, our data demonstrate that primitive HSCs do not participate in the hematopoietic recovery from common perturbations and call for the reevaluation of the concept of HSC-driven stress responses.


Asunto(s)
Hematopoyesis , Células Madre Hematopoyéticas , Animales , Ratones , Hematopoyesis/fisiología , Células Madre Hematopoyéticas/fisiología , Regeneración/fisiología , Inflamación
3.
Blood ; 134(13): 1046-1058, 2019 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-31434705

RESUMEN

Although bone marrow niche cells are essential for hematopoietic stem cell (HSC) maintenance, their interaction in response to stress is not well defined. Here, we used a mouse model of acute thrombocytopenia to investigate the cross talk between HSCs and niche cells during restoration of the thrombocyte pool. This process required membrane-localized stem cell factor (m-SCF) in megakaryocytes, which was regulated, in turn, by vascular endothelial growth factor A (VEGF-A) and platelet-derived growth factor-BB (PDGF-BB). HSCs and multipotent progenitors type 2 (MPP2), but not MPP3/4, were subsequently activated by a dual-receptor tyrosine kinase (RTK)-dependent signaling event, m-SCF/c-Kit and VEGF-A/vascular endothelial growth factor receptor 2 (VEGFR-2), contributing to their selective and early proliferation. Our findings describe a dynamic network of signals in response to the acute loss of a single blood cell type and reveal the important role of 3 RTKs and their ligands in orchestrating the selective activation of hematopoietic stem and progenitor cells (HSPCs) in thrombocytopenia.


Asunto(s)
Células Madre Hematopoyéticas/patología , Proteínas Tirosina Quinasas Receptoras/metabolismo , Transducción de Señal , Trombocitopenia/patología , Enfermedad Aguda , Animales , Becaplermina/metabolismo , Plaquetas/metabolismo , Plaquetas/patología , Células Madre Hematopoyéticas/metabolismo , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas c-kit/metabolismo , Trombocitopenia/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
4.
J Immunol ; 202(6): 1735-1746, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30728213

RESUMEN

Long-term survival of adoptively transferred chimeric Ag receptor (CAR) T cells is often limited. Transplantation of hematopoietic stem cells (HSCs) transduced to express CARs could help to overcome this problem as CAR-armed HSCs can continuously deliver CAR+ multicell lineages (e.g., T cells, NK cells). In dependence on the CAR construct, a variable extent of tonic signaling in CAR T cells was reported; thus, effects of CAR-mediated tonic signaling on the hematopoiesis of CAR-armed HSCs is unclear. To assess the effects of tonic signaling, two CAR constructs were established and analyzed 1) a signaling CAR inducing a solid Ag-independent tonic signaling termed CAR-28/ζ and 2) a nonstimulating control CAR construct lacking intracellular signaling domains termed CAR-Stop. Bone marrow cells from immunocompetent mice were isolated, purified for HSC-containing Lin-cKit+ cells or the Lin-cKit+ Sca-1+ subpopulation (Lin-Sca-1+cKit+), and transduced with both CAR constructs. Subsequently, modified bone marrow cells were transferred into irradiated mice, in which they successfully engrafted and differentiated into hematopoietic progenitors. HSCs expressing the CAR-Stop sustained normal hematopoiesis. In contrast, expression of the CAR-28/ζ led to elimination of mature CAR+ T and B cells, suggesting that the CAR-mediated tonic signaling mimics autorecognition via the newly recombined immune receptors in the developing lymphocytes.


Asunto(s)
Células Madre Hematopoyéticas/metabolismo , Activación de Linfocitos/fisiología , Linfopoyesis/fisiología , Receptores Quiméricos de Antígenos/metabolismo , Transducción de Señal/fisiología , Traslado Adoptivo , Animales , Diferenciación Celular/fisiología , Trasplante de Células Madre Hematopoyéticas/métodos , Humanos , Ratones , Ratones Endogámicos C57BL
5.
Stem Cells ; 37(7): 948-957, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30897261

RESUMEN

The prevailing view on murine hematopoiesis and on hematopoietic stem cells (HSCs) in particular derives from experiments that are related to regeneration after irradiation and HSC transplantation. However, over the past years, different experimental techniques have been developed to investigate hematopoiesis under homeostatic conditions, thereby providing access to proliferation and differentiation rates of hematopoietic stem and progenitor cells in the unperturbed situation. Moreover, it has become clear that hematopoiesis undergoes distinct changes during aging with large effects on HSC abundance, lineage contribution, asymmetry of division, and self-renewal potential. However, it is currently not fully resolved how stem and progenitor cells interact to respond to varying demands and how this balance is altered by an aging-induced shift in HSC polarity. Aiming toward a conceptual understanding, we introduce a novel in silico model to investigate the dynamics of HSC response to varying demand. By introducing an internal feedback within a heterogeneous HSC population, the model is suited to consistently describe both hematopoietic homeostasis and regeneration, including the limited regulation of HSCs in the homeostatic situation. The model further explains the age-dependent increase in phenotypic HSCs as a consequence of the cells' inability to preserve divisional asymmetry. Our model suggests a dynamically regulated population of intrinsically asymmetrically dividing HSCs as suitable control mechanism that adheres with many qualitative and quantitative findings on hematopoietic recovery after stress and aging. The modeling approach thereby illustrates how a mathematical formalism can support both the conceptual and the quantitative understanding of regulatory principles in HSC biology.


Asunto(s)
Envejecimiento/genética , Hematopoyesis/genética , Células Madre Hematopoyéticas/metabolismo , Homeostasis/genética , Modelos Teóricos , Animales , Diferenciación Celular , División Celular , Linaje de la Célula/genética , Proliferación Celular , Senescencia Celular/genética , Simulación por Computador , Células Madre Hematopoyéticas/citología , Ratones , Estrés Fisiológico
6.
J Allergy Clin Immunol ; 144(1): 254-266.e8, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30772497

RESUMEN

BACKGROUND: Monogenic interferonopathies are thought to be mediated by type I interferon. For example, a gain-of-function mutation in stimulator of interferon genes (STING; N153S) upregulates type I interferon-stimulated genes and causes perivascular inflammatory lung disease in mice. The equivalent mutation in human subjects also causes lung disease, which is thought to require signaling through the cyclic GMP-AMP synthase (cGAS)-STING pathway and subsequent activation of interferon regulatory factors (IRFs) 3 and 7, type I interferon, and interferon-stimulated genes. OBJECTIVE: We set out to define the roles of cGAS, IRF3, IRF7, the type I interferon receptor (IFN-α and IFN-ß receptor subunit 1 [IFNAR1]), T cells, and B cells in spontaneous lung disease in STING N153S mice. METHODS: STING N153S mice were crossed to animals lacking cGAS, IRF3/IRF7, IFNAR1, adaptive immunity, αß T cells, and mature B cells. Mice were evaluated for spontaneous lung disease. Additionally, bone marrow chimeric mice were assessed for lung disease severity and survival. RESULTS: Lung disease in STING N153S mice developed independently of cGAS, IRF3/IRF7, and IFNAR1. Bone marrow transplantation revealed that certain features of STING N153S-associated disease are intrinsic to the hematopoietic compartment. Recombination-activating gene 1 (Rag1)-/- STING N153S mice that lack adaptive immunity had no lung disease, and T-cell receptor ß chain (Tcrb)-/- STING N153S animals only had mild disease. STING N153S led to a reduction in percentages and numbers of naive and regulatory T cells, as well as an increased frequency of cytokine-producing effector T cells. CONCLUSION: Spontaneous lung disease in STING N153S mice develops independently of type I interferon signaling and cGAS. STING N153S relies primarily on T cells to promote lung disease in mice.


Asunto(s)
Enfermedades Pulmonares/inmunología , Proteínas de la Membrana/inmunología , Linfocitos T/inmunología , Animales , Linfocitos B/inmunología , Trasplante de Médula Ósea , Femenino , Mutación con Ganancia de Función , Interferón Tipo I/inmunología , Pulmón/inmunología , Masculino , Proteínas de la Membrana/genética , Ratones Transgénicos , Nucleotidiltransferasas/inmunología , Bazo/inmunología
7.
J Immunol ; 199(7): 2261-2269, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28835460

RESUMEN

Biallelic mutations of three prime repair exonuclease 1 (TREX1) cause the lupus-like disease Aicardi-Goutières syndrome in which accumulation of a yet unknown endogenous DNA substrate of TREX1 triggers a cyclic GMP-AMP synthase-dependent type I IFN response and systemic autoimmunity. Products of reverse transcription originating from endogenous retroelements have been suggested to be a major substrate for TREX1, and reverse transcriptase inhibitors (RTIs) were proposed as a therapeutic option in autoimmunity ensuing from defects of TREX1. In this study, we treated Trex1-/- mice with RTIs. The serum RTI levels reached were sufficient to block retrotransposition of endogenous retroelements. However, the treatment did not reduce the spontaneous type I IFN response and did not ameliorate lethal inflammation. Furthermore, long interspersed nuclear elements 1 retrotransposition was not enhanced in the absence of Trex1. Our data do not support the concept of retroelement-derived cDNA as key triggers of systemic autoimmunity in Trex1-deficient humans and mice and motivate the continuing search for the pathogenic IFN-inducing Trex1 substrate.


Asunto(s)
Autoinmunidad , Exodesoxirribonucleasas/metabolismo , Fosfoproteínas/metabolismo , Inhibidores de la Transcriptasa Inversa/sangre , Animales , Enfermedades Autoinmunes del Sistema Nervioso/inmunología , ADN Complementario , Exodesoxirribonucleasas/deficiencia , Exodesoxirribonucleasas/genética , Células HeLa , Humanos , Inflamación , Interferón Tipo I/biosíntesis , Interferón Tipo I/inmunología , Ratones , Mutación , Malformaciones del Sistema Nervioso/inmunología , Fosfoproteínas/deficiencia , Fosfoproteínas/genética , Retroelementos , Inhibidores de la Transcriptasa Inversa/efectos adversos , Inhibidores de la Transcriptasa Inversa/uso terapéutico , Transcripción Reversa
8.
Blood ; 128(19): 2285-2296, 2016 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-27357698

RESUMEN

Long-term repopulating (LT) hematopoietic stem cells (HSCs) are the most undifferentiated cells at the top of the hematopoietic hierarchy. The regulation of HSC pool size and its contribution to hematopoiesis are incompletely understood. We depleted hematopoietic stem and progenitor cells (HSPCs) in adult mice in situ and found that LT-HSCs recovered from initially very low levels (<1%) to below 10% of normal numbers but not more, whereas progenitor cells substantially recovered shortly after depletion. In spite of the persistent and massive reduction of LT-HSCs, steady-state hematopoiesis was unaffected and residual HSCs remained quiescent. Hematopoietic stress, although reported to recruit quiescent HSCs into cycle, was well tolerated by HSPC-depleted mice and did not induce expansion of the small LT-HSC compartment. Only upon 5-fluorouracil treatment was HSPC-depleted bone marrow compromised in reconstituting hematopoiesis, demonstrating that HSCs and early progenitors are crucial to compensate myeloablation. Hence, a contracted HSC compartment cannot recover in situ to its original size, and normal steady-state blood cell generation is sustained with <10% of normal LT-HSC numbers without increased contribution of the few residual cells.


Asunto(s)
Hematopoyesis , Células Madre Hematopoyéticas/citología , Estrés Fisiológico , Animales , Recuento de Células , Proliferación Celular , Ratones Endogámicos C57BL , Nicho de Células Madre
9.
J Immunol ; 197(6): 2157-66, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27511730

RESUMEN

Defects of the intracellular enzyme 3' repair exonuclease 1 (Trex1) cause the rare autoimmune condition Aicardi-Goutières syndrome and are associated with systemic lupus erythematosus. Trex1(-/-) mice develop type I IFN-driven autoimmunity, resulting from activation of the cytoplasmic DNA sensor cyclic GMP-AMP synthase by a nucleic acid substrate of Trex1 that remains unknown. To identify cell types responsible for initiation of autoimmunity, we generated conditional Trex1 knockout mice. Loss of Trex1 in dendritic cells was sufficient to cause IFN release and autoimmunity, whereas Trex1-deficient keratinocytes and microglia produced IFN but did not induce inflammation. In contrast, B cells, cardiomyocytes, neurons, and astrocytes did not show any detectable response to the inactivation of Trex1. Thus, individual cell types differentially respond to the loss of Trex1, and Trex1 expression in dendritic cells is essential to prevent breakdown of self-tolerance ensuing from aberrant detection of endogenous DNA.


Asunto(s)
Autoinmunidad , Células Dendríticas/fisiología , Exodesoxirribonucleasas/fisiología , Fosfoproteínas/fisiología , Animales , Antígenos CD19/fisiología , Linfocitos B/fisiología , Encéfalo/inmunología , Exodesoxirribonucleasas/deficiencia , Interferón Tipo I/biosíntesis , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosfoproteínas/deficiencia
10.
Blood ; 117(6): 2012-21, 2011 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-21148330

RESUMEN

Signaling through the receptor tyrosine kinase kit controls proliferation and differentiation of hematopoietic precursor cells and mast cells. Somatic point mutations of the receptor that constitutively activate kit signaling are associated with mastocytosis and various hematopoietic malignancies. We generated a Cre/loxP-based bacterial artificial chromosome transgenic mouse model that allows conditional expression of a kit gene carrying the kitD814V mutation (the murine homolog of the most common mutation in human mastocytosis, kitD816V) driven by the kit promoter. Expression of the mutant kit in cells of adult mice, including hematopoietic precursors, caused severe mastocytosis with 100% penetrance at young age frequently associated with additional hematopoietic (mostly B lineage-derived) neoplasms and focal colitis. Restriction of transgene expression to mature mast cells resulted in a similar mast cell disease developing with slower kinetics. Embryonic expression led to a hyperproliferative dysregulation of the erythroid lineage with a high rate of perinatal lethality. In addition, most adult animals developed colitis associated with mucosal mast cell accumulation. Our findings demonstrate that the effects of constitutive kit signaling critically depend on the developmental stage and the state of differentiation of the cell hit by the gain-of-function mutation.


Asunto(s)
Colitis/genética , Mastocitosis/genética , Mutación , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Proteínas Proto-Oncogénicas c-kit/genética , Sustitución de Aminoácidos , Animales , Secuencia de Bases , Transformación Celular Neoplásica/genética , Colitis/patología , Cartilla de ADN/genética , Femenino , Expresión Génica , Células Madre Hematopoyéticas/patología , Humanos , Masculino , Mastocitos/patología , Mastocitosis/patología , Ratones , Ratones Mutantes , Ratones Transgénicos , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patología , Embarazo
11.
Cancer Res ; 83(17): 2858-2872, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37335136

RESUMEN

Genome damage is a main driver of malignant transformation, but it also induces aberrant inflammation via the cGAS/STING DNA-sensing pathway. Activation of cGAS/STING can trigger cell death and senescence, thereby potentially eliminating genome-damaged cells and preventing against malignant transformation. Here, we report that defective ribonucleotide excision repair (RER) in the hematopoietic system caused genome instability with concomitant activation of the cGAS/STING axis and compromised hematopoietic stem cell function, ultimately resulting in leukemogenesis. Additional inactivation of cGAS, STING, or type I IFN signaling, however, had no detectable effect on blood cell generation and leukemia development in RER-deficient hematopoietic cells. In wild-type mice, hematopoiesis under steady-state conditions and in response to genome damage was not affected by loss of cGAS. Together, these data challenge a role of the cGAS/STING pathway in protecting the hematopoietic system against DNA damage and leukemic transformation. SIGNIFICANCE: Loss of cGAS/STING signaling does not impact DNA damage-driven leukemogenesis or alter steady-state, perturbed or malignant hematopoiesis, indicating that the cGAS/STING axis is not a crucial antioncogenic mechanism in the hematopoietic system. See related commentary by Zierhut, p. 2807.


Asunto(s)
Interferón Tipo I , Leucemia , Animales , Ratones , Hematopoyesis/genética , Interferón Tipo I/metabolismo , Leucemia/genética , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Transducción de Señal
12.
J Exp Med ; 220(1)2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36346347

RESUMEN

Defects in nucleic acid metabolizing enzymes can lead to spontaneous but selective activation of either cGAS/STING or RIG-like receptor (RLR) signaling, causing type I interferon-driven inflammatory diseases. In these pathophysiological conditions, activation of the DNA sensor cGAS and IFN production are linked to spontaneous DNA damage. Physiological, or tonic, IFN signaling on the other hand is essential to functionally prime nucleic acid sensing pathways. Here, we show that low-level chronic DNA damage in mice lacking the Aicardi-Goutières syndrome gene SAMHD1 reduced tumor-free survival when crossed to a p53-deficient, but not to a DNA mismatch repair-deficient background. Increased DNA damage did not result in higher levels of type I interferon. Instead, we found that the chronic interferon response in SAMHD1-deficient mice was driven by the MDA5/MAVS pathway but required functional priming through the cGAS/STING pathway. Our work positions cGAS/STING upstream of tonic IFN signaling in Samhd1-deficient mice and highlights an important role of the pathway in physiological and pathophysiological innate immune priming.


Asunto(s)
Interferón Tipo I , Ácidos Nucleicos , Ratones , Animales , Proteína 1 que Contiene Dominios SAM y HD/genética , Inmunidad Innata/genética , Proteínas de la Membrana/metabolismo , Nucleotidiltransferasas/metabolismo , Interferón Tipo I/metabolismo
13.
Blood ; 115(19): 3899-906, 2010 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-20200353

RESUMEN

Members of the Toll/interleukin-1 receptor (TIR) family are of importance for host defense and inflammation. Here we report that the TIR-family member interleukin-33R (IL-33R) cross-activates the receptor tyrosine kinase c-Kit in human and murine mast cells. The IL-33R-induced activation of signal transducer and activator of transcription 3 (STAT3), extracellular signal-regulated kinase 1/2 (Erk1/2), protein kinase B (PKB), and Jun NH(2)-terminal kinase 1 (JNK1) depends on c-Kit and is required to elicit optimal effector functions. Costimulation with the c-Kit ligand stem cell factor (SCF) is necessary for IL-33-induced cytokine production in primary mast cells. The structural basis for this cross-activation is the complex formation between c-Kit, IL-33R, and IL-1R accessory protein (IL-1RAcP). We found that c-Kit and IL-1RAcP interact constitutively and that IL-33R joins this complex upon ligand binding. Our findings support a model in which signals from seemingly disparate receptors are integrated for full cellular responses.


Asunto(s)
Proteína Accesoria del Receptor de Interleucina-1/metabolismo , Interleucinas/metabolismo , Mastocitos/metabolismo , Proteínas Proto-Oncogénicas c-kit/fisiología , Receptores de Interleucina/metabolismo , Transducción de Señal , Animales , Western Blotting , Médula Ósea/metabolismo , Células Cultivadas , Citocinas/metabolismo , Femenino , Citometría de Flujo , Humanos , Técnicas para Inmunoenzimas , Inmunoprecipitación , Integrasas/metabolismo , Proteína 1 Similar al Receptor de Interleucina-1 , Interleucina-33 , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Fosforilación , Factor de Células Madre/metabolismo , Tirosina/metabolismo
14.
STAR Protoc ; 3(2): 101337, 2022 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-35496783

RESUMEN

Understanding macrophage heterogeneity in tissue repair is a major challenge. Here, we describe a protocol that combines isolation of immune cells from skin wounds with subsequent flow-cytometry-based sorting of wound macrophages and single-cell RNA sequencing. We use a modified version of the original Smart-seq2 protocol to increase speed and accuracy. This protocol is useful for analyzing the pronounced heterogeneity of activation phenotypes in wound macrophages and might be adapted to other experimental models of skin inflammation. For complete details on the use and execution of this protocol, please refer to Willenborg et al. (2021).


Asunto(s)
Macrófagos , Cicatrización de Heridas , Animales , Citometría de Flujo , Recuento de Leucocitos , Ratones , Análisis de Secuencia de ARN
15.
Nat Commun ; 13(1): 4504, 2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35922411

RESUMEN

Hematopoietic stem cells (HSCs) produce highly diverse cell lineages. Here, we chart native lineage pathways emanating from HSCs and define their physiological regulation by computationally integrating experimental approaches for fate mapping, mitotic tracking, and single-cell RNA sequencing. We find that lineages begin to split when cells leave the tip HSC population, marked by high Sca-1 and CD201 expression. Downstream, HSCs either retain high Sca-1 expression and the ability to generate lymphocytes, or irreversibly reduce Sca-1 level and enter into erythro-myelopoiesis or thrombopoiesis. Thrombopoiesis is the sum of two pathways that make comparable contributions in steady state, a long route via multipotent progenitors and CD48hi megakaryocyte progenitors (MkPs), and a short route from HSCs to developmentally distinct CD48-/lo MkPs. Enhanced thrombopoietin signaling differentially accelerates the short pathway, enabling a rapid response to increasing demand. In sum, we provide a blueprint for mapping physiological differentiation fluxes from HSCs and decipher two functionally distinct pathways of native thrombopoiesis.


Asunto(s)
Células Madre Hematopoyéticas , Trombopoyesis , Diferenciación Celular/fisiología , Linaje de la Célula , Células Madre Hematopoyéticas/metabolismo , Mielopoyesis , Trombopoyesis/fisiología
16.
Sci Immunol ; 7(70): eabl7482, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35427180

RESUMEN

Macrophages populate every organ during homeostasis and disease, displaying features of tissue imprinting and heterogeneous activation. The disconnected picture of macrophage biology that has emerged from these observations is a barrier for integration across models or with in vitro macrophage activation paradigms. We set out to contextualize macrophage heterogeneity across mouse tissues and inflammatory conditions, specifically aiming to define a common framework of macrophage activation. We built a predictive model with which we mapped the activation of macrophages across 12 tissues and 25 biological conditions, finding a notable commonality and finite number of transcriptional profiles, in particular among infiltrating macrophages, which we modeled as defined stages along four conserved activation paths. These activation paths include a "phagocytic" regulatory path, an "inflammatory" cytokine-producing path, an "oxidative stress" antimicrobial path, or a "remodeling" extracellular matrix deposition path. We verified this model with adoptive cell transfer experiments and identified transient RELMɑ expression as a feature of monocyte-derived macrophage tissue engraftment. We propose that this integrative approach of macrophage classification allows the establishment of a common predictive framework of monocyte-derived macrophage activation in inflammation and homeostasis.


Asunto(s)
Activación de Macrófagos , Macrófagos , Animales , Citocinas/metabolismo , Homeostasis , Inflamación/metabolismo , Ratones
17.
Cell Stem Cell ; 28(11): 2020-2034.e12, 2021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34525348

RESUMEN

The division potential of individual stem cells and the molecular consequences of successive rounds of proliferation remain largely unknown. Here, we developed an inducible cell division counter (iCOUNT) that reports cell division events in human and mouse tissues in vitro and in vivo. Analyzing cell division histories of neural stem/progenitor cells (NSPCs) in the developing and adult brain, we show that iCOUNT can provide novel insights into stem cell behavior. Further, we use single-cell RNA sequencing (scRNA-seq) of iCOUNT-labeled NSPCs and their progenies from the developing mouse cortex and forebrain-regionalized human organoids to identify functionally relevant molecular pathways that are commonly regulated between mouse and human cells, depending on individual cell division histories. Thus, we developed a tool to characterize the molecular consequences of repeated cell divisions of stem cells that allows an analysis of the cellular principles underlying tissue formation, homeostasis, and repair.


Asunto(s)
Células-Madre Neurales , Animales , Encéfalo , División Celular , Proliferación Celular , Ratones , Organoides , Análisis de Secuencia de ARN
18.
Cell Metab ; 33(12): 2398-2414.e9, 2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34715039

RESUMEN

Wound healing is a coordinated process that initially relies on pro-inflammatory macrophages, followed by a pro-resolution function of these cells. Changes in cellular metabolism likely dictate these distinct activities, but the nature of these changes has been unclear. Here, we profiled early- versus late-stage skin wound macrophages in mice at both the transcriptional and functional levels. We found that glycolytic metabolism in the early phase is not sufficient to ensure productive repair. Instead, by combining conditional disruption of the electron transport chain with deletion of mitochondrial aspartyl-tRNA synthetase, followed by single-cell sequencing analysis, we found that a subpopulation of early-stage wound macrophages are marked by mitochondrial ROS (mtROS) production and HIF1α stabilization, which ultimately drives a pro-angiogenic program essential for timely healing. In contrast, late-phase, pro-resolving wound macrophages are marked by IL-4Rα-mediated mitochondrial respiration and mitohormesis. Collectively, we identify changes in mitochondrial metabolism as a critical control mechanism for macrophage effector functions during wound healing.


Asunto(s)
Macrófagos , Cicatrización de Heridas , Animales , Macrófagos/metabolismo , Ratones , Mitocondrias/metabolismo
19.
J Invest Dermatol ; 140(12): 2433-2441.e5, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32311397

RESUMEN

Mast cells (MCs) are tissue-resident hematopoietic cells intensely studied for their role as effectors in allergic immune responses. Yolk sac-derived embryonic MCs first populate tissues and are later replaced by definitive MCs. We show that definitive MC progenitors expand locally in skin and form clonal colonies that cover stable territories. In MC-deficient skin, colonies grow by proliferation of MCs at the border of the clonal territory. Clonal growth ceases at common borders of neighboring colonies. In steady state, colony self-renewal is independent of bone marrow contribution, and the clonal architecture remains fixed if not disturbed by skin inflammation. Inflammatory cues increase MC density setpoint, stimulating the influx of new progenitors from the bone marrow as well as proliferation of skin-resident cells. The expanding new arrivals disrespect territories of preexisting MC clones. We conclude that during a limited window early in development, definitive MC precursors efficiently enter the skin, expand, and self-maintain, occupying stable territories. In adulthood, circulating progenitors, excluded from steady-state skin, are recruited only into inflamed skin where they clonally expand alongside proliferating skin-resident MCs, disorganizing the original architecture of clonal territories.


Asunto(s)
Células Madre Adultas/fisiología , Autorrenovación de las Células/inmunología , Dermatitis/inmunología , Mastocitos/inmunología , Piel/patología , Animales , Médula Ósea , Células Cultivadas , Dermatitis/patología , Modelos Animales de Enfermedad , Embrión de Mamíferos , Células Madre Embrionarias/fisiología , Femenino , Humanos , Masculino , Ratones , Ratones Transgénicos , Mórula/citología , Piel/citología , Piel/inmunología , Acetato de Tetradecanoilforbol/inmunología
20.
Sci Adv ; 6(48)2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33239297

RESUMEN

Frameshift mutations in CALR (calreticulin) are associated with essential thrombocythemia (ET), but the stages at and mechanisms by which mutant CALR drives transformation remain incompletely defined. Here, we use single-cell approaches to examine the hematopoietic stem/progenitor cell landscape in a mouse model of mutant CALR-driven ET. We identify a trajectory linking hematopoietic stem cells (HSCs) with megakaryocytes and prospectively identify a previously unknown intermediate population that is overrepresented in the disease state. We also show that mutant CALR drives transformation primarily from the earliest stem cell compartment, with some contribution from megakaryocyte progenitors. Last, relative to wild-type HSCs, mutant CALR HSCs show increases in JAK-STAT signaling, the unfolded protein response, cell cycle, and a previously undescribed up-regulation of cholesterol biosynthesis. Overall, we have identified a novel megakaryocyte-biased cell population that is increased in a mouse model of ET and described transcriptomic changes linking CALR mutations to increased HSC proliferation and megakaryopoiesis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA