Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biomol NMR ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38904893

RESUMEN

Solution NMR is typically applied to biological systems with molecular weights < 40 kDa whereas magic-angle-spinning (MAS) solid-state NMR traditionally targets very large, oligomeric proteins and complexes exceeding 500 kDa in mass, including fibrils and crystalline protein preparations. Here, we propose that the gap between these size regimes can be filled by the approach presented that enables investigation of large, soluble and fully protonated proteins in the range of 40-140 kDa. As a key step, ultracentrifugation produces a highly concentrated, gel-like state, resembling a dense phase in spontaneous liquid-liquid phase separation (LLPS). By means of three examples, a Sulfolobus acidocaldarius bifurcating electron transfer flavoprotein (SaETF), tryptophan synthases from Salmonella typhimurium (StTS) and their dimeric ß-subunits from Pyrococcus furiosus (PfTrpB), we show that such samples yield well-resolved proton-detected 2D and 3D NMR spectra at 100 kHz MAS without heterogeneous broadening, similar to diluted liquids. Herein, we provide practical guidance on centrifugation conditions and tools, sample behavior, and line widths expected. We demonstrate that the observed chemical shifts correspond to those obtained from µM/low mM solutions or crystalline samples, indicating structural integrity. Nitrogen line widths as low as 20-30 Hz are observed. The presented approach is advantageous for proteins or nucleic acids that cannot be deuterated due to the expression system used, or where relevant protons cannot be re-incorporated after expression in deuterated medium, and it circumvents crystallization. Importantly, it allows the use of low-glycerol buffers in dynamic nuclear polarization (DNP) NMR of proteins as demonstrated with the cyanobacterial phytochrome Cph1.

2.
Chembiochem ; 21(11): 1597-1604, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-31930693

RESUMEN

Photosystem II (PSII) catalyzes the splitting of water, releasing protons and dioxygen. Its highly conserved subunit PsbO extends from the oxygen-evolving center (OEC) into the thylakoid lumen and stabilizes the catalytic Mn4 CaO5 cluster. The high degree of conservation of accessible negatively charged surface residues in PsbO suggests additional functions, as local pH buffer or by affecting the flow of protons. For this discussion, we provide an experimental basis, through the determination of pKa values of water-accessible aspartate and glutamate side-chain carboxylate groups by means of NMR. Their distribution is strikingly uneven, with high pKa values around 4.9 clustered on the luminal PsbO side and values below 3.5 on the side facing PSII. pH-dependent changes in backbone chemical shifts in the area of the lumen-exposed loops are observed, indicating conformational changes. In conclusion, we present a site-specific analysis of carboxylate group proton affinities in PsbO, providing a basis for further understanding of proton transport in photosynthesis.


Asunto(s)
Proteínas Bacterianas/química , Fotosíntesis/fisiología , Complejo de Proteína del Fotosistema II/química , Protones , Ácido Aspártico/química , Ácido Aspártico/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Ácido Glutámico/química , Ácido Glutámico/metabolismo , Enlace de Hidrógeno , Concentración de Iones de Hidrógeno , Modelos Moleculares , Oxígeno/química , Oxígeno/metabolismo , Complejo de Proteína del Fotosistema II/genética , Complejo de Proteína del Fotosistema II/metabolismo , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Termodinámica , Thermosynechococcus/enzimología , Thermosynechococcus/genética , Agua/química , Agua/metabolismo
3.
Res Sq ; 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38464080

RESUMEN

Solution NMR is typically applied to biological systems with molecular weights < 40 kDa whereas magic-angle-spinning (MAS) solid-state NMR traditionally targets very large, oligomeric proteins and complexes exceeding 500 kDa in mass, including fibrils and crystalline protein preparations. Here, we propose that the gap between these size regimes can be filled by the approach presented that enables investigation of large, soluble and fully protonated proteins in the range of 40-140 kDa. As a key step, ultracentrifugation produces a highly concentrated, gel-like state, resembling a dense phase in spontaneous liquid-liquid phase separation (LLPS). By means of three examples, a Sulfolobus acidocaldarius bifurcating electron transfer flavoprotein (SulfETF), tryptophan synthases from Salmonella typhimurium (StTS) and the dimeric ß-subunits from Pyrococcus furiosus (PfTrpB), we show that such samples yield well-resolved proton-detected 2D and 3D NMR spectra at 100 kHz MAS without heterogeneous broadening, similar to diluted liquids. Herein, we provide practical guidance on centrifugation conditions and tools, sample behavior, and line widths expected. We demonstrate that the observed chemical shifts correspond to those obtained from µM/low mM solutions or crystalline samples, indicating structural integrity. Nitrogen line widths as low as 20-30 Hz are observed. The presented approach is advantageous for proteins or nucleic acids that cannot be deuterated due to the expression system used, or where relevant protons cannot be re-incorporated after expression in deuterated medium, and it circumvents crystallization. Importantly, it allows the use of low-glycerol buffers in dynamic nuclear polarization (DNP) NMR of proteins as demonstrated with the cyanobacterial phytochrome Cph1.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA