Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 489
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 185(4): 712-728.e14, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35063084

RESUMEN

Tau (MAPT) drives neuronal dysfunction in Alzheimer disease (AD) and other tauopathies. To dissect the underlying mechanisms, we combined an engineered ascorbic acid peroxidase (APEX) approach with quantitative affinity purification mass spectrometry (AP-MS) followed by proximity ligation assay (PLA) to characterize Tau interactomes modified by neuronal activity and mutations that cause frontotemporal dementia (FTD) in human induced pluripotent stem cell (iPSC)-derived neurons. We established interactions of Tau with presynaptic vesicle proteins during activity-dependent Tau secretion and mapped the Tau-binding sites to the cytosolic domains of integral synaptic vesicle proteins. We showed that FTD mutations impair bioenergetics and markedly diminished Tau's interaction with mitochondria proteins, which were downregulated in AD brains of multiple cohorts and correlated with disease severity. These multimodal and dynamic Tau interactomes with exquisite spatial resolution shed light on Tau's role in neuronal function and disease and highlight potential therapeutic targets to block Tau-mediated pathogenesis.


Asunto(s)
Mitocondrias/metabolismo , Degeneración Nerviosa/metabolismo , Mapas de Interacción de Proteínas , Sinapsis/metabolismo , Proteínas tau/metabolismo , Enfermedad de Alzheimer/genética , Aminoácidos/metabolismo , Biotinilación , Encéfalo/metabolismo , Encéfalo/patología , Núcleo Celular/metabolismo , Progresión de la Enfermedad , Metabolismo Energético , Demencia Frontotemporal/genética , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Proteínas Mutantes/metabolismo , Mutación/genética , Degeneración Nerviosa/patología , Neuronas/metabolismo , Unión Proteica , Dominios Proteicos , Proteómica , Índice de Severidad de la Enfermedad , Fracciones Subcelulares/metabolismo , Tauopatías/genética , Proteínas tau/química
2.
Cell ; 184(3): 689-708.e20, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33482083

RESUMEN

The most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) is a GGGGCC repeat expansion in the C9orf72 gene. We developed a platform to interrogate the chromatin accessibility landscape and transcriptional program within neurons during degeneration. We provide evidence that neurons expressing the dipeptide repeat protein poly(proline-arginine), translated from the C9orf72 repeat expansion, activate a highly specific transcriptional program, exemplified by a single transcription factor, p53. Ablating p53 in mice completely rescued neurons from degeneration and markedly increased survival in a C9orf72 mouse model. p53 reduction also rescued axonal degeneration caused by poly(glycine-arginine), increased survival of C9orf72 ALS/FTD-patient-induced pluripotent stem cell (iPSC)-derived motor neurons, and mitigated neurodegeneration in a C9orf72 fly model. We show that p53 activates a downstream transcriptional program, including Puma, which drives neurodegeneration. These data demonstrate a neurodegenerative mechanism dynamically regulated through transcription-factor-binding events and provide a framework to apply chromatin accessibility and transcription program profiles to neurodegeneration.


Asunto(s)
Proteína C9orf72/metabolismo , Expansión de las Repeticiones de ADN/genética , Degeneración Nerviosa/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Axones/metabolismo , Proteína C9orf72/genética , Muerte Celular , Células Cultivadas , Corteza Cerebral/patología , Cromatina/metabolismo , Daño del ADN , Modelos Animales de Enfermedad , Drosophila , Ratones Endogámicos C57BL , Degeneración Nerviosa/patología , Estabilidad Proteica , Transcripción Genética , Proteínas Supresoras de Tumor/metabolismo
3.
Cell ; 177(1): 162-183, 2019 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-30901538

RESUMEN

Studies of the genetics of psychiatric disorders have become one of the most exciting and fast-moving areas in human genetics. A decade ago, there were few reproducible findings, and now there are hundreds. In this review, we focus on the findings that have illuminated the genetic architecture of psychiatric disorders and the challenges of using these findings to inform our understanding of pathophysiology. The evidence is now overwhelming that psychiatric disorders are "polygenic"-that many genetic loci contribute to risk. With the exception of a subset of those with ASD, few individuals with a psychiatric disorder have a single, deterministic genetic cause; rather, developing a psychiatric disorder is influenced by hundreds of different genetic variants, consistent with a polygenic model. As progressively larger studies have uncovered more about their genetic architecture, the need to elucidate additional architectures has become clear. Even if we were to have complete knowledge of the genetic architecture of a psychiatric disorder, full understanding requires deep knowledge of the functional genomic architecture-the implicated loci impact regulatory processes that influence gene expression and the functional coordination of genes that control biological processes. Following from this is cellular architecture: of all brain regions, cell types, and developmental stages, where and when are the functional architectures operative? Given that the genetic architectures of different psychiatric disorders often strongly overlap, we are challenged to re-evaluate and refine the diagnostic architectures of psychiatric disorders using fundamental genetic and neurobiological data.


Asunto(s)
Trastornos Mentales/epidemiología , Trastornos Mentales/genética , Alelos , Frecuencia de los Genes/genética , Predisposición Genética a la Enfermedad , Variación Genética/genética , Estudio de Asociación del Genoma Completo , Genómica/métodos , Humanos , Salud Mental , Herencia Multifactorial/genética
4.
Cell ; 179(3): 750-771.e22, 2019 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-31626773

RESUMEN

Tissue-specific regulatory regions harbor substantial genetic risk for disease. Because brain development is a critical epoch for neuropsychiatric disease susceptibility, we characterized the genetic control of the transcriptome in 201 mid-gestational human brains, identifying 7,962 expression quantitative trait loci (eQTL) and 4,635 spliceQTL (sQTL), including several thousand prenatal-specific regulatory regions. We show that significant genetic liability for neuropsychiatric disease lies within prenatal eQTL and sQTL. Integration of eQTL and sQTL with genome-wide association studies (GWAS) via transcriptome-wide association identified dozens of novel candidate risk genes, highlighting shared and stage-specific mechanisms in schizophrenia (SCZ). Gene network analysis revealed that SCZ and autism spectrum disorder (ASD) affect distinct developmental gene co-expression modules. Yet, in each disorder, common and rare genetic variation converges within modules, which in ASD implicates superficial cortical neurons. More broadly, these data, available as a web browser and our analyses, demonstrate the genetic mechanisms by which developmental events have a widespread influence on adult anatomical and behavioral phenotypes.


Asunto(s)
Trastorno del Espectro Autista/genética , Sitios de Carácter Cuantitativo/genética , Esquizofrenia/genética , Transcriptoma/genética , Trastorno del Espectro Autista/metabolismo , Trastorno del Espectro Autista/patología , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Femenino , Feto/metabolismo , Regulación del Desarrollo de la Expresión Génica , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Edad Gestacional , Humanos , Masculino , Neuronas/metabolismo , Polimorfismo de Nucleótido Simple/genética , Empalme del ARN/genética , Esquizofrenia/metabolismo , Esquizofrenia/patología
5.
Cell ; 177(1): 115-131, 2019 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-30901534

RESUMEN

Identifying the causes of similarities and differences in genetic disease prevalence among humans is central to understanding disease etiology. While present-day humans are not strongly differentiated, vast amounts of genomic data now make it possible to study subtle patterns of genetic variation. This allows us to trace our genomic history thousands of years into the past and its implications for the distribution of disease-associated variants today. Genomic analyses have shown that demographic processes shaped the distribution and frequency of disease-associated variants over time. Furthermore, local adaptation to new environmental conditions-including pathogens-has generated strong patterns of differentiation at particular loci. Researchers are also beginning to uncover the genetic architecture of complex diseases, affected by many variants of small effect. The field of population genomics thus holds great potential for providing further insights into the evolution of human disease.


Asunto(s)
Enfermedades Genéticas Congénitas/epidemiología , Enfermedades Genéticas Congénitas/etiología , Metagenómica/métodos , Adaptación Fisiológica/genética , Alelos , Evolución Molecular , Frecuencia de los Genes/genética , Flujo Genético , Variación Genética/genética , Genética de Población/métodos , Genómica/métodos , Humanos , Metagenómica/tendencias , Modelos Genéticos , Filogenia
6.
Cell ; 177(5): 1262-1279.e25, 2019 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-31056284

RESUMEN

Ferroptosis, a non-apoptotic form of programmed cell death, is triggered by oxidative stress in cancer, heat stress in plants, and hemorrhagic stroke. A homeostatic transcriptional response to ferroptotic stimuli is unknown. We show that neurons respond to ferroptotic stimuli by induction of selenoproteins, including antioxidant glutathione peroxidase 4 (GPX4). Pharmacological selenium (Se) augments GPX4 and other genes in this transcriptional program, the selenome, via coordinated activation of the transcription factors TFAP2c and Sp1 to protect neurons. Remarkably, a single dose of Se delivered into the brain drives antioxidant GPX4 expression, protects neurons, and improves behavior in a hemorrhagic stroke model. Altogether, we show that pharmacological Se supplementation effectively inhibits GPX4-dependent ferroptotic death as well as cell death induced by excitotoxicity or ER stress, which are GPX4 independent. Systemic administration of a brain-penetrant selenopeptide activates homeostatic transcription to inhibit cell death and improves function when delivered after hemorrhagic or ischemic stroke.


Asunto(s)
Isquemia Encefálica , Péptidos de Penetración Celular/farmacología , Ferroptosis/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Hemorragias Intracraneales , Neuronas , Fosfolípido Hidroperóxido Glutatión Peroxidasa/biosíntesis , Selenio/farmacología , Accidente Cerebrovascular , Transcripción Genética/efectos de los fármacos , Animales , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Modelos Animales de Enfermedad , Estrés del Retículo Endoplásmico/efectos de los fármacos , Humanos , Hemorragias Intracraneales/tratamiento farmacológico , Hemorragias Intracraneales/metabolismo , Hemorragias Intracraneales/patología , Masculino , Ratones , Neuronas/metabolismo , Neuronas/patología , Factor de Transcripción Sp1/metabolismo , Accidente Cerebrovascular/tratamiento farmacológico , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/patología , Factor de Transcripción AP-2/metabolismo
7.
Cell ; 178(4): 850-866.e26, 2019 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-31398340

RESUMEN

We performed a comprehensive assessment of rare inherited variation in autism spectrum disorder (ASD) by analyzing whole-genome sequences of 2,308 individuals from families with multiple affected children. We implicate 69 genes in ASD risk, including 24 passing genome-wide Bonferroni correction and 16 new ASD risk genes, most supported by rare inherited variants, a substantial extension of previous findings. Biological pathways enriched for genes harboring inherited variants represent cytoskeletal organization and ion transport, which are distinct from pathways implicated in previous studies. Nevertheless, the de novo and inherited genes contribute to a common protein-protein interaction network. We also identified structural variants (SVs) affecting non-coding regions, implicating recurrent deletions in the promoters of DLG2 and NR3C2. Loss of nr3c2 function in zebrafish disrupts sleep and social function, overlapping with human ASD-related phenotypes. These data support the utility of studying multiplex families in ASD and are available through the Hartwell Autism Research and Technology portal.


Asunto(s)
Trastorno del Espectro Autista/genética , Predisposición Genética a la Enfermedad/genética , Linaje , Mapas de Interacción de Proteínas/genética , Animales , Niño , Bases de Datos Genéticas , Modelos Animales de Enfermedad , Femenino , Eliminación de Gen , Guanilato-Quinasas/genética , Humanos , Patrón de Herencia/genética , Aprendizaje Automático , Masculino , Núcleo Familiar , Regiones Promotoras Genéticas/genética , Receptores de Mineralocorticoides/genética , Factores de Riesgo , Proteínas Supresoras de Tumor/genética , Secuenciación Completa del Genoma , Pez Cebra/genética
8.
Cell ; 177(6): 1600-1618.e17, 2019 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-31150625

RESUMEN

Autism spectrum disorder (ASD) manifests as alterations in complex human behaviors including social communication and stereotypies. In addition to genetic risks, the gut microbiome differs between typically developing (TD) and ASD individuals, though it remains unclear whether the microbiome contributes to symptoms. We transplanted gut microbiota from human donors with ASD or TD controls into germ-free mice and reveal that colonization with ASD microbiota is sufficient to induce hallmark autistic behaviors. The brains of mice colonized with ASD microbiota display alternative splicing of ASD-relevant genes. Microbiome and metabolome profiles of mice harboring human microbiota predict that specific bacterial taxa and their metabolites modulate ASD behaviors. Indeed, treatment of an ASD mouse model with candidate microbial metabolites improves behavioral abnormalities and modulates neuronal excitability in the brain. We propose that the gut microbiota regulates behaviors in mice via production of neuroactive metabolites, suggesting that gut-brain connections contribute to the pathophysiology of ASD.


Asunto(s)
Trastorno del Espectro Autista/microbiología , Síntomas Conductuales/microbiología , Microbioma Gastrointestinal/fisiología , Animales , Trastorno del Espectro Autista/metabolismo , Trastorno del Espectro Autista/fisiopatología , Bacterias , Conducta Animal/fisiología , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Humanos , Ratones , Microbiota , Factores de Riesgo
9.
Cell ; 172(1-2): 289-304.e18, 2018 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-29307494

RESUMEN

Non-coding regions comprise most of the human genome and harbor a significant fraction of risk alleles for neuropsychiatric diseases, yet their functions remain poorly defined. We created a high-resolution map of non-coding elements involved in human cortical neurogenesis by contrasting chromatin accessibility and gene expression in the germinal zone and cortical plate of the developing cerebral cortex. We link distal regulatory elements (DREs) to their cognate gene(s) together with chromatin interaction data and show that target genes of human-gained enhancers (HGEs) regulate cortical neurogenesis and are enriched in outer radial glia, a cell type linked to human cortical evolution. We experimentally validate the regulatory effects of predicted enhancers for FGFR2 and EOMES. We observe that common genetic variants associated with educational attainment, risk for neuropsychiatric disease, and intracranial volume are enriched within regulatory elements involved in cortical neurogenesis, demonstrating the importance of this early developmental process for adult human cognitive function.


Asunto(s)
Corteza Cerebral/metabolismo , Ensamble y Desensamble de Cromatina , Regulación del Desarrollo de la Expresión Génica , Neurogénesis , Neuronas/metabolismo , Línea Celular , Células Cultivadas , Corteza Cerebral/citología , Corteza Cerebral/embriología , Cromatina/genética , Cromatina/metabolismo , Elementos de Facilitación Genéticos , Femenino , Humanos , Masculino , Neuronas/citología , Polimorfismo Genético , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo
10.
Cell ; 167(4): 915-932, 2016 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-27814521

RESUMEN

Neurodevelopment is a complex process governed by both intrinsic and extrinsic signals. While historically studied by researching the brain, inputs from the periphery impact many neurological conditions. Indeed, emerging data suggest communication between the gut and the brain in anxiety, depression, cognition, and autism spectrum disorder (ASD). The development of a healthy, functional brain depends on key pre- and post-natal events that integrate environmental cues, such as molecular signals from the gut. These cues largely originate from the microbiome, the consortium of symbiotic bacteria that reside within all animals. Research over the past few years reveals that the gut microbiome plays a role in basic neurogenerative processes such as the formation of the blood-brain barrier, myelination, neurogenesis, and microglia maturation and also modulates many aspects of animal behavior. Herein, we discuss the biological intersection of neurodevelopment and the microbiome and explore the hypothesis that gut bacteria are integral contributors to development and function of the nervous system and to the balance between mental health and disease.


Asunto(s)
Encéfalo/fisiología , Microbioma Gastrointestinal , Animales , Conducta , Encéfalo/crecimiento & desarrollo , Femenino , Humanos , Trastornos del Neurodesarrollo/microbiología , Embarazo , Vagina/microbiología
11.
Cell ; 167(5): 1385-1397.e11, 2016 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-27863250

RESUMEN

The association of histone modification changes with autism spectrum disorder (ASD) has not been systematically examined. We conducted a histone acetylome-wide association study (HAWAS) by performing H3K27ac chromatin immunoprecipitation sequencing (ChIP-seq) on 257 postmortem samples from ASD and matched control brains. Despite etiological heterogeneity, ≥68% of syndromic and idiopathic ASD cases shared a common acetylome signature at >5,000 cis-regulatory elements in prefrontal and temporal cortex. Similarly, multiple genes associated with rare genetic mutations in ASD showed common "epimutations." Acetylome aberrations in ASD were not attributable to genetic differentiation at cis-SNPs and highlighted genes involved in synaptic transmission, ion transport, epilepsy, behavioral abnormality, chemokinesis, histone deacetylation, and immunity. By correlating histone acetylation with genotype, we discovered >2,000 histone acetylation quantitative trait loci (haQTLs) in human brain regions, including four candidate causal variants for psychiatric diseases. Due to the relative stability of histone modifications postmortem, we anticipate that the HAWAS approach will be applicable to multiple diseases.


Asunto(s)
Trastorno del Espectro Autista/genética , Cerebelo/metabolismo , Código de Histonas , Corteza Prefrontal/metabolismo , Sitios de Carácter Cuantitativo , Lóbulo Temporal/metabolismo , Acetilación , Trastorno del Espectro Autista/metabolismo , Autopsia , Inmunoprecipitación de Cromatina , Elementos de Facilitación Genéticos , Humanos , Regiones Promotoras Genéticas , Factores de Transcripción/metabolismo
14.
Cell ; 159(7): 1511-23, 2014 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-25525873

RESUMEN

Alternative splicing (AS) generates vast transcriptomic and proteomic complexity. However, which of the myriad of detected AS events provide important biological functions is not well understood. Here, we define the largest program of functionally coordinated, neural-regulated AS described to date in mammals. Relative to all other types of AS within this program, 3-15 nucleotide "microexons" display the most striking evolutionary conservation and switch-like regulation. These microexons modulate the function of interaction domains of proteins involved in neurogenesis. Most neural microexons are regulated by the neuronal-specific splicing factor nSR100/SRRM4, through its binding to adjacent intronic enhancer motifs. Neural microexons are frequently misregulated in the brains of individuals with autism spectrum disorder, and this misregulation is associated with reduced levels of nSR100. The results thus reveal a highly conserved program of dynamic microexon regulation associated with the remodeling of protein-interaction networks during neurogenesis, the misregulation of which is linked to autism.


Asunto(s)
Empalme Alternativo , Trastornos Generalizados del Desarrollo Infantil/patología , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Animales , Trastornos Generalizados del Desarrollo Infantil/metabolismo , Humanos , Ratones , Modelos Moleculares , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Neurogénesis , Dominios y Motivos de Interacción de Proteínas , Análisis de Secuencia de ARN , Lóbulo Temporal/patología
15.
Nature ; 618(7964): 349-357, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37258678

RESUMEN

The incidence of Alzheimer's disease (AD), the leading cause of dementia, increases rapidly with age, but why age constitutes the main risk factor is still poorly understood. Brain ageing affects oligodendrocytes and the structural integrity of myelin sheaths1, the latter of which is associated with secondary neuroinflammation2,3. As oligodendrocytes support axonal energy metabolism and neuronal health4-7, we hypothesized that loss of myelin integrity could be an upstream risk factor for neuronal amyloid-ß (Aß) deposition, the central neuropathological hallmark of AD. Here we identify genetic pathways of myelin dysfunction and demyelinating injuries as potent drivers of amyloid deposition in mouse models of AD. Mechanistically, myelin dysfunction causes the accumulation of the Aß-producing machinery within axonal swellings and increases the cleavage of cortical amyloid precursor protein. Suprisingly, AD mice with dysfunctional myelin lack plaque-corralling microglia despite an overall increase in their numbers. Bulk and single-cell transcriptomics of AD mouse models with myelin defects show that there is a concomitant induction of highly similar but distinct disease-associated microglia signatures specific to myelin damage and amyloid plaques, respectively. Despite successful induction, amyloid disease-associated microglia (DAM) that usually clear amyloid plaques are apparently distracted to nearby myelin damage. Our data suggest a working model whereby age-dependent structural defects of myelin promote Aß plaque formation directly and indirectly and are therefore an upstream AD risk factor. Improving oligodendrocyte health and myelin integrity could be a promising target to delay development and slow progression of AD.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Vaina de Mielina , Placa Amiloide , Animales , Ratones , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Modelos Animales de Enfermedad , Vaina de Mielina/metabolismo , Vaina de Mielina/patología , Placa Amiloide/genética , Placa Amiloide/metabolismo , Placa Amiloide/patología , Axones/metabolismo , Axones/patología , Microglía/metabolismo , Microglía/patología , Análisis de Expresión Génica de una Sola Célula , Factores de Riesgo , Progresión de la Enfermedad
16.
Nature ; 624(7991): 403-414, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38092914

RESUMEN

The brain controls nearly all bodily functions via spinal projecting neurons (SPNs) that carry command signals from the brain to the spinal cord. However, a comprehensive molecular characterization of brain-wide SPNs is still lacking. Here we transcriptionally profiled a total of 65,002 SPNs, identified 76 region-specific SPN types, and mapped these types into a companion atlas of the whole mouse brain1. This taxonomy reveals a three-component organization of SPNs: (1) molecularly homogeneous excitatory SPNs from the cortex, red nucleus and cerebellum with somatotopic spinal terminations suitable for point-to-point communication; (2) heterogeneous populations in the reticular formation with broad spinal termination patterns, suitable for relaying commands related to the activities of the entire spinal cord; and (3) modulatory neurons expressing slow-acting neurotransmitters and/or neuropeptides in the hypothalamus, midbrain and reticular formation for 'gain setting' of brain-spinal signals. In addition, this atlas revealed a LIM homeobox transcription factor code that parcellates the reticulospinal neurons into five molecularly distinct and spatially segregated populations. Finally, we found transcriptional signatures of a subset of SPNs with large soma size and correlated these with fast-firing electrophysiological properties. Together, this study establishes a comprehensive taxonomy of brain-wide SPNs and provides insight into the functional organization of SPNs in mediating brain control of bodily functions.


Asunto(s)
Encéfalo , Perfilación de la Expresión Génica , Vías Nerviosas , Neuronas , Médula Espinal , Animales , Ratones , Hipotálamo , Neuronas/metabolismo , Neuropéptidos , Médula Espinal/citología , Médula Espinal/metabolismo , Encéfalo/citología , Encéfalo/metabolismo , Neurotransmisores , Mesencéfalo/citología , Formación Reticular/citología , Electrofisiología , Cerebelo/citología , Corteza Cerebral/citología
17.
Cell ; 155(5): 1008-21, 2013 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-24267887

RESUMEN

Genetic studies have identified dozens of autism spectrum disorder (ASD) susceptibility genes, raising two critical questions: (1) do these genetic loci converge on specific biological processes, and (2) where does the phenotypic specificity of ASD arise, given its genetic overlap with intellectual disability (ID)? To address this, we mapped ASD and ID risk genes onto coexpression networks representing developmental trajectories and transcriptional profiles representing fetal and adult cortical laminae. ASD genes tightly coalesce in modules that implicate distinct biological functions during human cortical development, including early transcriptional regulation and synaptic development. Bioinformatic analyses suggest that translational regulation by FMRP and transcriptional coregulation by common transcription factors connect these processes. At a circuit level, ASD genes are enriched in superficial cortical layers and glutamatergic projection neurons. Furthermore, we show that the patterns of ASD and ID risk genes are distinct, providing a biological framework for further investigating the pathophysiology of ASD.


Asunto(s)
Encéfalo/embriología , Trastornos Generalizados del Desarrollo Infantil/genética , Trastornos Generalizados del Desarrollo Infantil/metabolismo , Redes Reguladoras de Genes , Encéfalo/fisiopatología , Corteza Cerebral/fisiopatología , Regulación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Humanos , Neuronas/metabolismo , Transcripción Genética
18.
Nature ; 602(7898): 647-653, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35165440

RESUMEN

Integration of sensory and molecular inputs from the environment shapes animal behaviour. A major site of exposure to environmental molecules is the gastrointestinal tract, in which dietary components are chemically transformed by the microbiota1 and gut-derived metabolites are disseminated to all organs, including the brain2. In mice, the gut microbiota impacts behaviour3, modulates neurotransmitter production in the gut and brain4,5, and influences brain development and myelination patterns6,7. The mechanisms that mediate the gut-brain interactions remain poorly defined, although they broadly involve humoral or neuronal connections. We previously reported that the levels of the microbial metabolite 4-ethylphenyl sulfate (4EPS) were increased in a mouse model of atypical neurodevelopment8. Here we identified biosynthetic genes from the gut microbiome that mediate the conversion of dietary tyrosine to 4-ethylphenol (4EP), and bioengineered gut bacteria to selectively produce 4EPS in mice. 4EPS entered the brain and was associated with changes in region-specific activity and functional connectivity. Gene expression signatures revealed altered oligodendrocyte function in the brain, and 4EPS impaired oligodendrocyte maturation in mice and decreased oligodendrocyte-neuron interactions in ex vivo brain cultures. Mice colonized with 4EP-producing bacteria exhibited reduced myelination of neuronal axons. Altered myelination dynamics in the brain have been associated with behavioural outcomes7,9-14. Accordingly, we observed that mice exposed to 4EPS displayed anxiety-like behaviours, and pharmacological treatments that promote oligodendrocyte differentiation prevented the behavioural effects of 4EPS. These findings reveal that a gut-derived molecule influences complex behaviours in mice through effects on oligodendrocyte function and myelin patterning in the brain.


Asunto(s)
Ansiedad , Microbioma Gastrointestinal , Microbiota , Animales , Ansiedad/metabolismo , Bacterias , Encéfalo/metabolismo , Microbioma Gastrointestinal/fisiología , Ratones , Ratones Endogámicos C57BL , Microbiota/fisiología , Vaina de Mielina , Fenoles/metabolismo
19.
Nature ; 611(7936): 532-539, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36323788

RESUMEN

Neuropsychiatric disorders classically lack defining brain pathologies, but recent work has demonstrated dysregulation at the molecular level, characterized by transcriptomic and epigenetic alterations1-3. In autism spectrum disorder (ASD), this molecular pathology involves the upregulation of microglial, astrocyte and neural-immune genes, the downregulation of synaptic genes, and attenuation of gene-expression gradients in cortex1,2,4-6. However, whether these changes are limited to cortical association regions or are more widespread remains unknown. To address this issue, we performed RNA-sequencing analysis of 725 brain samples spanning 11 cortical areas from 112 post-mortem samples from individuals with ASD and neurotypical controls. We find widespread transcriptomic changes across the cortex in ASD, exhibiting an anterior-to-posterior gradient, with the greatest differences in primary visual cortex, coincident with an attenuation of the typical transcriptomic differences between cortical regions. Single-nucleus RNA-sequencing and methylation profiling demonstrate that this robust molecular signature reflects changes in cell-type-specific gene expression, particularly affecting excitatory neurons and glia. Both rare and common ASD-associated genetic variation converge within a downregulated co-expression module involving synaptic signalling, and common variation alone is enriched within a module of upregulated protein chaperone genes. These results highlight widespread molecular changes across the cerebral cortex in ASD, extending beyond association cortex to broadly involve primary sensory regions.


Asunto(s)
Trastorno del Espectro Autista , Corteza Cerebral , Variación Genética , Transcriptoma , Humanos , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/metabolismo , Trastorno del Espectro Autista/patología , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Neuronas/metabolismo , ARN/análisis , ARN/genética , Transcriptoma/genética , Autopsia , Análisis de Secuencia de ARN , Corteza Visual Primaria/metabolismo , Neuroglía/metabolismo
20.
Cell ; 145(6): 831-4, 2011 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-21663789

RESUMEN

Induced pluripotent stem cell-derived neurons from patients promise to fill an important niche between studies in humans and model organisms in deciphering mechanisms and identifying therapeutic avenues for neurologic and psychiatric diseases. Recent work begins to tap this potential and also highlights challenges that must be overcome to be fully realized.


Asunto(s)
Encéfalo/citología , Células Madre Pluripotentes Inducidas/citología , Neuronas/citología , Animales , Encefalopatías/patología , Humanos , Trastornos Mentales/patología , Neuronas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA