Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Int J Mol Sci ; 25(4)2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38396974

RESUMEN

Endotoxin, a synonym for lipopolysaccharide (LPS), is anchored in the outer membranes of Gram-negative bacteria. Even minute amounts of LPS entering the circulatory system can have a lethal immunoactivating effect. Since LPS is omnipresent in the environment, it poses a great risk of contaminating any surface or solution, including research products and pharmaceuticals. Therefore, monitoring LPS contamination and taking preventive or decontamination measures to ensure human safety is of the utmost importance. Nevertheless, molecules used for endotoxin detection or inhibition often suffer from interferences, low specificity, and low affinity. For this reason, the selection of new binders that are biocompatible, easy to produce, and that can be used for biopharmaceutical applications, such as endotoxin removal, is of high interest. Powerful techniques for selecting LPS-binding molecules in vitro are display technologies. In this study, we established and compared the selection and production of LPS-specific, monoclonal, human single-chain variable fragments (scFvs) through two display methods: yeast and phage display. After selection, scFvs were fused to a human constant fragment crystallizable (Fc). To evaluate the applicability of the constructs, they were conjugated to polystyrene microbeads. Here, we focused on comparing the functionalized beads and their LPS removal capacity to a polyclonal anti-lipid A bead. Summarized, five different scFvs were selected through phage and yeast display, with binding properties comparable to a commercial polyclonal antibody. Two of the conjugated scFv-Fcs outperformed the polyclonal antibody in terms of the removal of LPS in aqueous solution, resulting in 265 times less residual LPS in solution, demonstrating the potential of display methods to generate LPS-specific binding molecules.


Asunto(s)
Bacteriófagos , Anticuerpos de Cadena Única , Humanos , Anticuerpos Monoclonales , Bacteriófagos/genética , Saccharomyces cerevisiae/metabolismo , Biblioteca de Péptidos , Endotoxinas , Lipopolisacáridos
2.
Angew Chem Int Ed Engl ; 63(24): e202318870, 2024 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-38578432

RESUMEN

Multiplexed bead assays for solution-phase biosensing often encounter cross-over reactions during signal amplification steps, leading to unwanted false positive and high background signals. Current solutions involve complex custom-designed and costly equipment, limiting their application in simple laboratory setup. In this study, we introduce a straightforward protocol to adapt a multiplexed single-bead assay to standard fluorescence imaging plates, enabling the simultaneous analysis of thousands of reactions per plate. This approach focuses on the design and synthesis of bright fluorescent and magnetic microspheres (MagSiGlow) with multiple fluorescent wavelengths serving as unique detection markers. The imaging-based, single-bead assay, combined with a scripted algorithm, allows the detection, segmentation, and co-localization on average of 7500 microspheres per field of view across five imaging channels in less than one second. We demonstrate the effectiveness of this method with remarkable sensitivity at low protein detection limits (100 pg/mL). This technique showed over 85 % reduction in signal cross-over to the solution-based method after the concurrent detection of tumor-associated protein biomarkers. This approach holds the promise of substantially enhancing high throughput biosensing for multiple targets, seamlessly integrating with rapid image analysis algorithms.


Asunto(s)
Colorantes Fluorescentes , Microesferas , Dióxido de Silicio , Dióxido de Silicio/química , Colorantes Fluorescentes/química , Humanos , Proteínas de Neoplasias/análisis , Proteínas de Neoplasias/metabolismo , Técnicas Biosensibles/métodos
3.
Int J Mol Sci ; 24(18)2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37762274

RESUMEN

Endotoxins or lipopolysaccharides (LPS), found in the outer membrane of Gram-negative bacterial cell walls, can stimulate the human innate immune system, leading to life-threatening symptoms. Therefore, regulatory limits for endotoxin content apply to injectable pharmaceuticals, and excess LPS must be removed before commercialization. The majority of available endotoxin removal systems are based on the non-specific adsorption of LPS to charged and/or hydrophobic surfaces. Albeit effective to remove endotoxins, the lack of specificity can result in the unwanted loss of essential proteins from the pharmaceutical formulation. In this work, we developed microparticles conjugated to anti-Lipid A antibodies for selective endotoxin removal. Anti-Lipid A particles were characterized using flow cytometry and microscopy techniques. These particles exhibited a depletion capacity > 6 ×103 endotoxin units/mg particles from water, as determined with two independent methods (Limulus Amebocyte Lysate test and nanoparticle tracking analysis). Additionally, we compared these particles with a non-specific endotoxin removal system in a series of formulations of increasing complexity: bovine serum albumin in water < insulin in buffer < birch pollen extracts. We demonstrated that the specific anti-Lipid A particles show a higher protein recovery without compromising their endotoxin removal capacity. Consequently, we believe that the specificity layer integrated by the anti-Lipid A antibody could be advantageous to enhance product yield.


Asunto(s)
Endotoxinas , Lipopolisacáridos , Humanos , Endotoxinas/química , Lipopolisacáridos/química , Composición de Medicamentos , Proteínas de la Membrana/química , Prueba de Limulus/métodos
4.
MRS Bull ; 46(7): 643-649, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34305307

RESUMEN

The field of nanomedicine is a rapidly evolving field driven by the need for safer and more efficient therapies as well as ultrasensitive and fast diagnostics. Although the advantages of nanoparticles for diagnostic and therapeutic applications are unambiguous, in vivo requirements, including low toxicity, long blood circulation time, proper clearance, sufficient stability, and reproducible synthesis have, in most cases, bedeviled their clinical translation. Nevertheless, researchers have the opportunity to have a decisive influence on the future of nanomedicine by developing new multifunctional molecules and adapting the material design to the requirements. Ultimately, the goal is to find the right level of functionality without adding unnecessary complexity to the system. This article aims to emphasize the potential and current challenges of nanoparticle-based medical agents and highlights how smart and functional material design considerations can help to overcome many of the current limitations and increase the clinical value of nanoparticles.

5.
Int J Mol Sci ; 21(7)2020 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-32268473

RESUMEN

Based on their tunable physicochemical properties and the possibility of producing cell-specific platforms through surface modification with functional biomolecules, nanoparticles (NPs) represent highly promising tools for biomedical applications. To improve their potential under physiological conditions and to enhance their cellular uptake, combinations with cell-penetrating peptides (CPPs) represent a valuable strategy. CPPs are often cationic peptide sequences that are able to translocate across biological membranes and to carry attached cargos inside cells and have thus been recognized as versatile tools for drug delivery. Nevertheless, the conjugation of CPP to NP surfaces is dependent on many properties from both individual components, and further insight into this complex interplay is needed to allow for the fabrication of highly stable but functional vectors. Since CPPs per se are nonselective and enter nearly all cells likewise, additional decoration of NPs with homing devices, such as tumor-homing peptides, enables the design of multifunctional platforms for the targeted delivery of chemotherapeutic drugs. In this review, we have updated the recent advances in the field of CPP-NPs, focusing on synthesis strategies, elucidating the influence of different physicochemical properties, as well as their application in cancer research.


Asunto(s)
Péptidos de Penetración Celular/administración & dosificación , Péptidos de Penetración Celular/química , Portadores de Fármacos/química , Nanopartículas/química , Nanomedicina Teranóstica , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Fenómenos Químicos , Sistemas de Liberación de Medicamentos , Humanos , Neoplasias/diagnóstico , Neoplasias/tratamiento farmacológico
6.
Inorg Chem ; 58(15): 10408-10416, 2019 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-31290653

RESUMEN

New heteroleptic rhenium(I) compounds, [fac-Re(I)(CO)3(L)] (e.g., L= tfb-dmpda, (N,N-(4,4,4-trifluorobut-1-en-3-on)-dimethyl propylene diamine)), containing anionic and neutral ligands act as efficient precursors to grow polycrystalline rhenium nitride (ReN) films by their vapor phase deposition at 600 °C. Deposition of ReN films under an external magnetic field showed an orientation effect with preferred growth of crystallites along ⟨100⟩ direction. Rhenium complexes reported here unify high stability and reactivity in a single molecule through a Janus-type coordination around a Re center, constituted by a chelating tridentate ligand and three carbonyl groups imparting a facial geometry. Single-crystal diffraction analysis confirmed the structural integrity of the new rhenium compounds. The rigidity of molecular framework was validated in solution via 1D and 2D NMR spectroscopy, in the gas phase via mass spectrometry, and in the solid-state by thermogravimetric analysis and differential scanning calorimetry studies. The analytical data showed that pre-existent Re-N bonds in [fac-Re(I)(CO)3(L)] facilitated low-temperature formation of crystalline ReN deposits confirmed by grazing angle X-ray diffraction analysis. The surface chemical composition and the uniformity of microstructure were provided by X-ray photoelectron spectroscopy (XPS) and scanning and transmission electron microscopy (SEM/TEM), respectively.

7.
Front Immunol ; 15: 1254162, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38433827

RESUMEN

Cancer immunotherapies using chimeric antigen receptor (CAR) T cells have tremendous potential and proven clinical efficacy against a number of malignancies. Research and development are emerging to deepen the knowledge of CAR T cell efficacy and extend the therapeutic potential of this novel therapy. To this end, functional characterization of CAR T cells plays a central role in consecutive phases across fundamental research and therapeutic development, with increasing needs for standardization. The functional characterization of CAR T cells is typically achieved by assessing critical effector functions, following co-culture with cell lines expressing the target antigen. However, the use of target cell lines poses several limitations, including alterations in cell fitness, metabolic state or genetic drift due to handling and culturing of the cells, which would increase variabilities and could lead to inconsistent results. Moreover, the use of target cell lines can be work and time intensive, and introduce significant background due to the allogenic responses of T cells. To overcome these limitations, we developed a synthetic bead-based platform ("Artificial Targets") to characterize CAR T cell function in vitro. These synthetic microparticles could specifically induce CAR T cell activation, as measured by CD69 and CD137 (4-1BB) upregulation. In addition, engagement with Artificial Targets resulted in induction of multiple effector functions of CAR T cells mimicking the response triggered by target cell lines including cytotoxic activity, as assessed by exposure of CD107a (LAMP-1), expression and secretion of cytokines, as well as cell proliferation. Importantly, in contrast to target cells, stimulation with Artificial Targets showed limited unspecific CAR T cell proliferation. Finally, Artificial Targets demonstrated flexibility to engage multiple costimulatory molecules that can synergistically enhance the CAR T cell function and represented a powerful tool for modulating CAR T cell responses. Collectively, our results show that Artificial Targets can specifically activate CAR T cells for essential effector functions that could significantly advance standardization of functional assessment of CAR T cells, from early development to clinical applications.


Asunto(s)
Micropartículas Derivadas de Células , Línea Celular , Proliferación Celular , Técnicas de Cocultivo , Citocinas
8.
Methods Mol Biol ; 2383: 105-117, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34766285

RESUMEN

The surface decoration of nanoparticles with cell-penetrating peptides (CPPs) represents a common technique for intracellular delivery of nanotherapeutics. Conjugate formation can be performed via covalent or non-covalent strategies. Here, we describe on the synthesis of silica nanoparticles, a well-known inorganic drug delivery vehicle type, and their surface modification with cell-penetrating peptides using sC18 and derivatives thereof. Moreover, physicochemical as well as biological characterization methods, including cellular uptake measurements, of particle-peptide conjugates are described.


Asunto(s)
Nanopartículas , Péptidos de Penetración Celular , Sistemas de Liberación de Medicamentos , Dióxido de Silicio
9.
Adv Mater ; 34(8): e2107892, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34890082

RESUMEN

Surface chemistry critically affects the diagnostic performance of biosensors. An ideal sensor surface should be resistant to nonspecific protein adsorption, yet be conducive to analytical responses. Here a new polymeric material, zwitterionic polypyrrole (ZiPPy), is reported to produce optimal surface condition for biosensing electrodes. ZiPPy combines two unique advantages: the zwitterionic function that efficiently hydrates electrode surface, hindering nonspecific binding of hydrophobic proteins; and the pyrrole backbone, which enables rapid (<7 min), controlled deposition of ZiPPy through electropolymerization. ZiPPy-coated electrodes show lower electrochemical impedance and less nonspecific protein adsorption (low fouling), outperforming bare and polypyrrole-coated electrodes. Moreover, affinity ligands for target biomarkers can be immobilized together with ZiPPy in a single-step electropolymerization. ZiPPy-coated electrodes are developed with specificity for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The prepared sensor detects SARS-CoV-2 antibodies in human saliva down to 50 ng mL-1 , without the need for sample purification or secondary labeling.


Asunto(s)
Anticuerpos Antivirales/análisis , Técnicas Biosensibles/métodos , COVID-19/diagnóstico , Polímeros/química , Pirroles/química , Técnicas Biosensibles/instrumentación , COVID-19/virología , Técnicas Electroquímicas , Electrodos , Galvanoplastia , Oro/química , Humanos , Límite de Detección , SARS-CoV-2/inmunología , SARS-CoV-2/aislamiento & purificación , Saliva/metabolismo , Propiedades de Superficie
10.
Biomater Sci ; 10(4): 1113-1122, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35048092

RESUMEN

To date, there are no preoperative and quantitative dynamics in clinical practice that can reliably differentiate between a benign and malignant renal cell carcinoma (RCC). For monitoring different analytes in body fluids, more than 40 different molecular biomarkers have been identified, however, they are associated with limited clinical sensitivity and/or non-optimal specificity due to their leaky nature. Previous work on RCC demonstrated the miRNA15a to be reliable and novel biomarker with 98.1% specificity and 100% sensitivity. Despite the high potential of miRNA15a biomarker, its clinical application is considerably hampered by the insensitive nature of the detection methods and low concentration of biomarker in samples that is aggravated by the high level of contamination due to other solutes present in body fluids. In this work, a non-invasive quantitative approach is demonstrated to overcome such diagnostics issues through biotin-streptavidin binding and fluorescence active magnetic nanocarriers that ensured prompt isolation, enrichment and purification of the biomarker miRNA15a from urine. The study demonstrates that detectable low levels of these miRNAs through miRNA capturing nanocarriers can potentially function as advanced diagnostic markers for the non-invasive investigation and early detection of renal cancer.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , MicroARNs , Biomarcadores de Tumor/genética , Carcinoma de Células Renales/diagnóstico , Carcinoma de Células Renales/genética , Humanos , Neoplasias Renales/diagnóstico , MicroARNs/genética
11.
Adv Healthc Mater ; 11(2): e2102035, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34747576

RESUMEN

Magnetic nanoparticles with hybrid sensing functions are in wide use for bioseparation, sensing, and in vivo imaging. Yet, nonspecific protein adsorption to the particle surface continues to present a technical challenge and diminishes the theoretical protein detection capabilities. Here, a magneto-plasmonic nanoparticle synthesis is developed that minimizes nonspecific protein adsorption. Building on the success of zwitterionic polymers, a highly stable and anergic nanomaterial, magnetic gold nanoparticles with idealized coating (MAGIC) is obtained with significantly lower serum protein adsorption compared to control nanoparticles coated with commonly used polymers (polyethylene glycol, polyethylenimine, or polyallylamine hydrochloride). MAGIC nanoparticles are able to sense specific bladder cancer biomarkers at low levels and in the presence of other proteins. This strategy may find wide spread applications for in vitro and in vivo sensing as well as isolations.


Asunto(s)
Oro , Nanopartículas del Metal , Fenómenos Magnéticos , Magnetismo , Sistemas de Atención de Punto
12.
J Mater Chem B ; 9(1): 9-22, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33179710

RESUMEN

Circulating biomarkers such as microRNAs (miRNAs), short noncoding RNA strands, represent prognostic and diagnostic indicators for a variety of physiological disorders making their detection and quantification an attractive approach for minimally invasive early disease diagnosis. However, highly sensitive and selective detection methods are required given the generally low abundance of miRNAs in body fluids together with the presence of large amounts of other potentially interfering biomolecules. Although a variety of miRNA isolation and detection methods have been established in clinics, they usually require trained personnel and often constitute labor-, time- and cost-intensive approaches. During the last years, nanoparticle-based biosensors have received increasing attention due to their superior detection efficiency even in very low concentration regimes. This is based on their unique physicochemical properties in combination with their high surface area that allows for the immobilization of multiple recognition sites resulting in fast and effective recognition of analytes. Among various materials, magnetic nanoparticles have been identified as useful tools for the separation, concentration, and detection of miRNAs. Here, we review state-of-the-art technology with regard to magnetic particle-based miRNA detection from body fluids, critically discussing challenges and future perspective of such biosensors while comparing their handling, sensitivity as well as selectivity against the established miRNA isolation and detection methods.


Asunto(s)
Técnicas Biosensibles/métodos , Líquidos Corporales/metabolismo , Nanopartículas de Magnetita/análisis , MicroARNs/análisis , MicroARNs/metabolismo , Animales , Líquidos Corporales/química , Humanos , Nanopartículas de Magnetita/química , Nanoestructuras/análisis , Nanoestructuras/química
13.
Nanoscale Adv ; 2(1): 453-462, 2020 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-36133977

RESUMEN

The capability of cell-penetrating peptides (CPPs) to enable translocation of cargos across biological barriers shows promising pharmaceutical potential for the transport of drug molecules, as well as nanomaterials, into cells. Herein, we report on the optimization of a CPP, namely sC18, in terms of its translocation efficiency and investigate new CPPs regarding their interaction with silica nanoparticles (NPs). First, alanine scanning of sC18 yielded 16 cationic peptides from which two were selected for further studies. Whereas in the first case, a higher positive net charge and enhanced amphipathicity resulted in significantly higher internalization rates than sC18, the second one demonstrated reduced cellular uptake efficiencies and served as a control. We then attached these CPPs to silica nanoparticles of different sizes (50, 150 and 300 nm) via electrostatic interactions and could demonstrate that the secondary alpha-helical structure of the peptides was preserved. Following this, cellular uptake studies using HeLa cells showed that the tested CPP-NPs were successfully translocated into HeLa cells in a size-dependent manner. Moreover, depending on the CPP used, we realized differences in translocation efficiency, which were similar to what we had observed for the free peptides. All in all, we highlight the high potential of sequential fine-tuning of CPPs and provide novel insights into their interplay with inorganic biologically benign nanoparticles. Given the high cellular permeability of CPPs and their ability to translocate into a wide spectrum of cell types, our studies may stimulate future research of CPPs with inorganic nanocarrier surfaces.

14.
Dalton Trans ; 49(45): 16204-16216, 2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-32330218

RESUMEN

The chemical stability of oleate-capped sub-10 nm α- and ß-NaREF4 NPs (RE = Y, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, Lu for α- and RE = Pr, Nd, Sm, Eu, Gd, Tb, Dy for ß-phase NPs) was evaluated under the acidic conditions used for ligand removal towards water dispersibility. It was found that for such small NPs, a pH lower than 3 was necessary for the water transfer to be efficient and to yield well-dispersed ligand-free NPs. In stark contrast to the generally considered good chemical stability of NaREF4, these conditions were observed to pose a risk to phase transformation of the NaREF4 NPs into much larger, hexagonal- or orthorhombic-phase REF3, depending on the NP composition. A correlation between the thermodynamic stability of the α/ß-NaREF4 and the hexagonal/orthorhombic REF3 phases - dictated by the RE ion choice - and the chemical stability of the NPs was found. For instance, ß-NaGdF4 NPs remained stable, while α-NaGdF4 NPs underwent phase transformation into hexagonal GdF3. More general, NaREF4 NPs based on lighter RE ions were more prone towards phase transformation, while those based on heavier RE ions exhibited stability. Herein, within the RE series, the borderline for phase transformation was identified as Tb/Dy for α-NaREF4 NPs and Sm/Eu for ß-NaREF4 NPs, respectively. Also, given the large interest in luminescent NPs for, e.g. biomedical applications, optically active Ln3+ ions (Ln = Nd, Eu, Tb, Er/Yb) were doped into α/ß-NaGdF4 host NPs, and the dopant influence on the chemical stability was evaluated. Steady state and time-resolved spectroscopy unveiled spectral features characteristic for Ln3+ f-f transitions, i.e. downshifting and upconversion, before and after ligand removal. Overall, the results herein described emphasise the importance of minding the chemical procedure used for ligand removal of NaREF4 NPs of different crystalline phases and RE compositions.

15.
J Neural Eng ; 17(4): 046044, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32764195

RESUMEN

OBJECTIVE: Report simple reference structure fabrication and validate the precise localization of subdural micro- and standard electrodes in magnetic resonance imaging (MRI) in phantom experiments. APPROACH: Electrode contacts with diameters of 0.3 mm and 4 mm are localized in 1.5 T MRI using reference structures made of silicone and iron oxide nanoparticle doping. The precision of the localization procedure was assessed for several standard MRI sequences and implant orientations in phantom experiments and compared to common clinical localization procedures. MAIN RESULTS: A localization precision of 0.41 ± 0.20 mm could be achieved for both electrode diameters compared to 1.46 ± 0.69 mm that was achieved for 4 mm standard electrode contacts localized using a common clinical standard method. The new reference structures are intrinsically bio-compatible, and they can be detected with currently available feature detection software so that a clinical implementation of this technology should be feasible. SIGNIFICANCE: Neuropathologies are increasingly diagnosed and treated with subdural electrodes, where the exact localization of the electrode contacts with respect to the patient's cortical anatomy is a prerequisite for the procedure. Post-implantation electrode localization using MRI may be advantageous compared to the common alternative of CT-MRI image co-registration, as it avoids systematic localization errors associated with the co-registration itself, as well as brain shift and implant movement. Additionally, MRI provides superior soft tissue contrast for the identification of brain lesions without exposing the patient to ionizing radiation. Recent studies show that smaller electrodes and high-density electrode grids are ideal for clinical and research purposes, but the localization of these devices in MRI has not been demonstrated.


Asunto(s)
Imagen por Resonancia Magnética , Espacio Subdural , Encéfalo , Mapeo Encefálico , Electrodos Implantados , Electroencefalografía , Humanos
16.
Dalton Trans ; 49(38): 13317-13325, 2020 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-32940296

RESUMEN

A new Cu(i) precursor, [(COD)Cu(TFB-TFEA)] (COD = 1,5-cyclooctadiene and TFB-TFEA = N-(4,4,4-trifluorobut-1-en-3-on)-6,6,6-trifluoroethylamine) with high volatility and a clean thermal decomposition pattern was tested for thermal and plasma-assisted chemical vapor deposition (CVD). The heteroleptic configuration based on an anionic and a chelating neutral ligand unified both reactivity and sufficient stability resulting in an intrinsic molecular control over the composition of the resulting CVD deposits. The electronic influence of the ligand on the metal site was studied by 1D and 2D NMR spectroscopy, while EI mass spectrometry revealed the ligand elimination cascade. Thermal and plasma CVD experiments demonstrated the suitability of the copper compound for an atom-efficient (high molecule-to-material yield) deposition of copper(0) and copper(i) oxide films that could be converted into crystalline copper(ii) oxide upon heat treatment at 500 °C.

17.
Sci Rep ; 9(1): 2069, 2019 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-30765836

RESUMEN

MicroRNAs (miRNAs) are small non-coding nucleotides playing a crucial role in posttranscriptional expression and regulation of target genes in nearly all kinds of cells. In this study, we demonstrate a reliable and efficient capture and purification of miRNAs and intracellular proteins using magnetic nanoparticles functionalized with antisense oligonucleotides. For this purpose, a tumor suppressor miRNA (miR-198), deregulated in several human cancer types, was chosen as the model oligonucleotide. Magnetite nanoparticles carrying the complementary sequence of miR-198 (miR-198 antisense) on their surface were delivered into cells and subsequently used for the extracellular transport of miRNA and proteins. The successful capture of miR-198 was demonstrated by isolating RNA from magnetic nanoparticles followed by real-time PCR quantification. Our experimental data showed that antisense-coated particles captured 5-fold higher amounts of miR-198 when compared to the control nanoparticles. Moreover, several proteins that could play a significant role in miR-198 biogenesis were found attached to miR-198 conjugated nanoparticles and analyzed by mass spectrometry. Our findings demonstrate that a purpose-driven vectorization of magnetic nanobeads with target-specific recognition ligands is highly efficient in selectively transporting miRNA and disease-relevant proteins out of cells and could become a reliable and useful tool for future diagnostic, therapeutic and analytical applications.


Asunto(s)
MicroARNs/genética , Oligonucleótidos Antisentido/genética , Proteínas/genética , Línea Celular , Humanos , Fenómenos Magnéticos
18.
RSC Adv ; 8(44): 24883-24892, 2018 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-35542120

RESUMEN

Hollow mesoporous silica capsules (HMSC) are potential drug transport vehicles due to their biocompatibility, high loading capacity and sufficient stability in biological milieu. Herein, we report the synthesis of ellipsoid-shaped HMSC (aspect ratio ∼2) performed using hematite particles as solid templates that were coated with a conformal silica shell through cross-condensation reactions. For obtaining hollow silica capsules, the iron oxide core was removed by acidic leaching. Gas sorption studies on HMSC revealed mesoscopic pores (main pore width ∼38 Å) and a high surface area of 308.8 m2 g-1. Cell uptake of dye-labeled HMSC was confirmed by incubating them with human cervical cancer (HeLa) cells and analyzing the internalization through confocal microscopy. The amphiphilic nature of HMSC for drug delivery applications was tested by loading antibiotic (ciprofloxacin) and anticancer (curcumin) compounds as model drugs for hydrophilic and hydrophobic therapeutics, respectively. The versatility of HMSC in transporting hydrophilic as well as hydrophobic drugs and a pH dependent drug release over several days under physiological conditions was demonstrated in both cases by UV-vis spectroscopy. Ciprofloxacin-loaded HMSC were additionally evaluated towards Gram negative (E. coli) bacteria and demonstrated their efficacy even at low concentrations (10 µg ml-1) in inhibiting complete bacterial growth over 18 hours.

19.
Sci Rep ; 8(1): 1115, 2018 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-29348435

RESUMEN

Carbon-based nanomaterials including carbon nanotubes (CNTs) have been shown to trigger inflammation. However, how these materials are 'sensed' by immune cells is not known. Here we compared the effects of two carbon-based nanomaterials, single-walled CNTs (SWCNTs) and graphene oxide (GO), on primary human monocyte-derived macrophages. Genome-wide transcriptomics assessment was performed at sub-cytotoxic doses. Pathway analysis of the microarray data revealed pronounced effects on chemokine-encoding genes in macrophages exposed to SWCNTs, but not in response to GO, and these results were validated by multiplex array-based cytokine and chemokine profiling. Conditioned medium from SWCNT-exposed cells acted as a chemoattractant for dendritic cells. Chemokine secretion was reduced upon inhibition of NF-κB, as predicted by upstream regulator analysis of the transcriptomics data, and Toll-like receptors (TLRs) and their adaptor molecule, MyD88 were shown to be important for CCL5 secretion. Moreover, a specific role for TLR2/4 was confirmed by using reporter cell lines. Computational studies to elucidate how SWCNTs may interact with TLR4 in the absence of a protein corona suggested that binding is guided mainly by hydrophobic interactions. Taken together, these results imply that CNTs may be 'sensed' as pathogens by immune cells.


Asunto(s)
Macrófagos/fisiología , Nanotubos de Carbono , Receptores Toll-Like/metabolismo , Células Cultivadas , Quimiocinas/metabolismo , Citotoxicidad Inmunológica , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Interacciones Huésped-Patógeno/inmunología , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Macrófagos/ultraestructura , Modelos Moleculares , Conformación Molecular , Nanotubos de Carbono/química , Reproducibilidad de los Resultados , Transducción de Señal , Receptores Toll-Like/química , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA