Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Gut ; 69(9): 1677-1690, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-31992593

RESUMEN

OBJECTIVE: TGF-ß2 (TGF-ß, transforming growth factor beta), the less-investigated sibling of TGF-ß1, is deregulated in rodent and human liver diseases. Former data from bile duct ligated and MDR2 knockout (KO) mouse models for human cholestatic liver disease suggested an involvement of TGF-ß2 in biliary-derived liver diseases. DESIGN: As we also found upregulated TGFB2 in liver tissue of patients with primary sclerosing cholangitis (PSC) and primary biliary cholangitis (PBC), we now fathomed the positive prospects of targeting TGF-ß2 in early stage biliary liver disease using the MDR2-KO mice. Specifically, the influence of TgfB2 silencing on the fibrotic and inflammatory niche was analysed on molecular, cellular and tissue levels. RESULTS: TgfB2-induced expression of fibrotic genes in cholangiocytes and hepatic stellate cellswas detected. TgfB2 expression in MDR2-KO mice was blunted using TgfB2-directed antisense oligonucleotides (AON). Upon AON treatment, reduced collagen deposition, hydroxyproline content and αSMA expression as well as induced PparG expression reflected a significant reduction of fibrogenesis without adverse effects on healthy livers. Expression analyses of fibrotic and inflammatory genes revealed AON-specific regulatory effects on Ccl3, Ccl4, Ccl5, Mki67 and Notch3 expression. Further, AON treatment of MDR2-KO mice increased tissue infiltration by F4/80-positive cells including eosinophils, whereas the number of CD45-positive inflammatory cells decreased. In line, TGFB2 and CD45 expression correlated positively in PSC/PBC patients and localised in similar areas of the diseased liver tissue. CONCLUSIONS: Taken together, our data suggest a new mechanistic explanation for amelioration of fibrogenesis by TGF-ß2 silencing and provide a direct rationale for TGF-ß2-directed drug development.


Asunto(s)
Colangitis Esclerosante , Silenciador del Gen , Cirrosis Hepática Biliar , Cirrosis Hepática , Oligonucleótidos Antisentido , Factor de Crecimiento Transformador beta2/genética , Factor de Crecimiento Transformador beta2/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Animales , Colangitis Esclerosante/metabolismo , Colangitis Esclerosante/patología , Modelos Animales de Enfermedad , Descubrimiento de Drogas , Regulación de la Expresión Génica , Células Estrelladas Hepáticas/metabolismo , Humanos , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Cirrosis Hepática/prevención & control , Cirrosis Hepática Biliar/metabolismo , Cirrosis Hepática Biliar/patología , Ratones , Ratones Noqueados , Regulación hacia Arriba , Miembro 4 de la Subfamilia B de Casete de Unión a ATP
2.
Cancer Sci ; 104(3): 398-408, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23281849

RESUMEN

Epithelial-mesenchymal transition (EMT) is an important mechanism to initiate cancer invasion and metastasis. Bone morphogenetic protein (BMP)-9 is a member of the transforming growth factor (TGF)-ß superfamily. It has been suggested to play a role in cancer development in some non-hepatic tumors. In the present study, two hepatocellular carcinoma (HCC) lines, HLE and HepG2, were treated with BMP-9 in vitro, and phenotypic changes and cell motility were analyzed. In situ hybridization (ISH) and immunohistochemical analyses were performed with human HCC tissue samples in order to assess expression levels of BMP-9. In vivo, BMP-9 protein and mRNA were expressed in all the tested patients to diverse degrees. At the protein level, mildly positive (1 + ) BMP-9 staining could be observed in 25/41 (61%), and moderately to strongly positive (2 + ) in 16/41 (39%) of the patients. In 27/41 (65%) patients, the BMP-9 protein expression level was consistent with the mRNA expression level as measured by ISH. In those patients with 2 + protein level, nuclear pSmad1 expression in cancer cells was also significantly increased. Expression of BMP-9 was positively related to nuclear Snail expression and reversely correlated to cell surface E-cadherin expression, although this did not reach statistical significance. Expression levels of BMP-9 were significantly associated with the T stages of the investigated tumors and high levels of BMP-9 were detected by immunofluorescence especially at the tumor borders in samples from an HCC mouse model. In vitro, BMP-9 treatment caused a reduction of E-cadherin and ZO-1 and an induction of Vimentin and Snail expression. Furthermore, cell migration was enhanced by BMP-9 in both HCC cell lines. These results imply that EMT induced by BMP-9 is related to invasiveness of HCC.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Cadherinas/metabolismo , Línea Celular Tumoral , Transición Epitelial-Mesenquimal , Femenino , Factor 2 de Diferenciación de Crecimiento , Humanos , Masculino , Persona de Mediana Edad
3.
Histopathology ; 61(2): 306-13, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22458731

RESUMEN

AIMS: In situ hybridization (ISH) is the method of choice for analysis of the local distribution of gene expression in tissue samples at the cellular level. In this study we present a rapid and efficient protocol for the generation of labelled cRNA probes. METHODS AND RESULTS: The protocol is based on the preparation of DNA in vitro transcription templates using polymerase chain reaction (PCR), using primers that include RNA polymerase promoter sequences and size-based purification of PCR fragments containing the target gene-specific cDNA and promoter elements for T7 and SP6 RNA polymerase. The optimized purification protocols ensure high transcription efficiency and target specificity of the labelled cRNA. The cRNA hybridization probes obtained are compatible with established in situ hybridization protocols. CONCLUSIONS: Purified PCR fragment-based in vitro transcription enables preparation of in situ hybridization probes which allow the rapid detection of gene expression distribution in tissue slices from any gene of interest.


Asunto(s)
Hibridación in Situ/métodos , Reacción en Cadena de la Polimerasa/métodos , ARN Complementario/genética , ARN Complementario/aislamiento & purificación , Albúminas/genética , Animales , Secuencia de Bases , Cartilla de ADN/genética , ARN Polimerasas Dirigidas por ADN/genética , Digoxigenina , Perfilación de la Expresión Génica/métodos , Células Hep G2 , Humanos , Hígado/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Técnicas de Sonda Molecular , Regiones Promotoras Genéticas , alfa-Fetoproteínas/genética
4.
Cells ; 11(23)2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36496994

RESUMEN

Availability of oxygen plays an important role in tissue organization and cell-type specific metabolism. It is, however, difficult to analyze hypoxia-related adaptations in vitro because of inherent limitations of experimental model systems. In this study, we establish a microfluidic tissue culture protocol to generate hypoxic gradients in vitro, mimicking the conditions found in the liver acinus. To accomplish this, four microfluidic chips, each containing two chambers, were serially connected to obtain eight interconnected chambers. HepG2 hepatocytes were uniformly seeded in each chamber and cultivated under a constant media flow of 50 µL/h for 72 h. HepG2 oxygen consumption under flowing media conditions established a normoxia to hypoxia gradient within the chambers, which was confirmed by oxygen sensors located at the inlet and outlet of the connected microfluidic chips. Expression of Hif1α mRNA and protein was used to indicate hypoxic conditions in the cells and albumin mRNA and protein expression served as a marker for liver acinus-like zonation. Oxygen measurements performed over 72 h showed a change from 17.5% to 15.9% of atmospheric oxygen, which corresponded with a 9.2% oxygen reduction in the medium between chamber1 (inlet) and 8 (outlet) in the connected microfluidic chips after 72 h. Analysis of Hif1α expression and nuclear translocation in HepG2 cells additionally confirmed the hypoxic gradient from chamber1 to chamber8. Moreover, albumin mRNA and protein levels were significantly reduced from chamber1 to chamber8, indicating liver acinus zonation along the oxygen gradient. Taken together, microfluidic cultivation in interconnected chambers provides a new model for analyzing cells in a normoxic to hypoxic gradient in vitro. By using a well-characterized cancer cell line as a homogenous hepatocyte population, we also demonstrate that an approximate 10% reduction in oxygen triggers translocation of Hif1α to the nucleus and reduces albumin production.


Asunto(s)
Hígado , Oxígeno , Humanos , Oxígeno/metabolismo , Hígado/metabolismo , Hipoxia/metabolismo , ARN Mensajero/metabolismo , Albúminas/metabolismo
5.
J Cell Biol ; 221(1)2022 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-34860252

RESUMEN

Transforming growth factor ß (TGF-ß) signaling plays a fundamental role in metazoan development and tissue homeostasis. However, the molecular mechanisms concerning the ubiquitin-related dynamic regulation of TGF-ß signaling are not thoroughly understood. Using a combination of proteomics and an siRNA screen, we identify pVHL as an E3 ligase for SMAD3 ubiquitination. We show that pVHL directly interacts with conserved lysine and proline residues in the MH2 domain of SMAD3, triggering degradation. As a result, the level of pVHL expression negatively correlates with the expression and activity of SMAD3 in cells, Drosophila wing, and patient tissues. In Drosophila, loss of pVHL leads to the up-regulation of TGF-ß targets visible in a downward wing blade phenotype, which is rescued by inhibition of SMAD activity. Drosophila pVHL expression exhibited ectopic veinlets and reduced wing growth in a similar manner as upon loss of TGF-ß/SMAD signaling. Thus, our study demonstrates a conserved role of pVHL in the regulation of TGF-ß/SMAD3 signaling in human cells and Drosophila wing development.


Asunto(s)
Proteolisis , Transducción de Señal , Proteína smad3/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/metabolismo , Animales , Drosophila melanogaster/metabolismo , Células HCT116 , Células HeLa , Humanos , Unión Proteica , Dominios Proteicos , Proteína Smad2/metabolismo , Proteína smad3/química , Ubiquitina-Proteína Ligasas/metabolismo
6.
Commun Biol ; 3: 10, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31909202

RESUMEN

Gold compounds have a long history of use as immunosuppressants, but their precise mechanism of action is not completely understood. Using our recently developed liver-on-a-chip platform we now show that gold compounds containing planar N-heterocyclic carbene (NHC) ligands are potent ligands for the aryl hydrocarbon receptor (AHR). Further studies showed that the lead compound (MC3) activates TGFß1 signaling and suppresses CD4+ T-cell activation in vitro, in human and mouse T cells. Conversely, genetic knockdown or chemical inhibition of AHR activity or of TGFß1-SMAD-mediated signaling offsets the MC3-mediated immunosuppression. In scurfy mice, a mouse model of human immunodysregulation polyendocrinopathy enteropathy X-linked syndrome, MC3 treatment reduced autoimmune phenotypes and extended lifespan from 24 to 58 days. Our findings suggest that the immunosuppressive activity of gold compounds can be improved by introducing planar NHC ligands to activate the AHR-associated immunosuppressive pathway, thus expanding their potential clinical application for autoimmune diseases.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Terapia de Inmunosupresión/métodos , Compuestos Orgánicos de Oro/inmunología , Receptores de Hidrocarburo de Aril/genética , Transducción de Señal/efectos de los fármacos , Factor de Crecimiento Transformador beta1/genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Supervivencia Celular/efectos de los fármacos , Células Hep G2 , Humanos , Masculino , Ratones , Receptores de Hidrocarburo de Aril/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo
7.
Blood Adv ; 3(5): 777-788, 2019 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-30846427

RESUMEN

Aortic stenosis (AS) is a degenerative heart condition characterized by fibrosis and narrowing of aortic valves (AV), resulting in high wall shear stress (WSS) across valves. AS is associated with high plasma levels of transforming growth factor-ß1 (TGF-ß1), which can be activated by WSS to induce organ fibrosis, but the cellular source of TGF-ß1 is not clear. Here, we show that platelet-derived TGF-ß1 plays an important role in AS progression. We first established an aggressive and robust murine model of AS, using the existing Ldlr -/- Apob100/100 (LDLR) breed of mice, and accelerated AS progression by feeding them a high-fat diet (HFD). We then captured very high resolution images of AV movement and thickness and of blood flow velocity across the AV, using a modified ultrasound imaging technique, which revealed early evidence of AS and distinguished different stages of AS progression. More than 90% of LDLR animals developed AS within 6 months of HFD. Scanning electron microscopy and whole-mount immunostaining imaging of AV identified activated platelets physically attached to valvular endothelial cells (VEC) expressing high phosphorylated Smad2 (p-Smad2). To test the contribution of platelet-derived TGF-ß1 in AS, we derived LDLR mice lacking platelet TGF-ß1 (TGF-ß1platelet-KO-LDLR) and showed reduced AS progression and lower p-Smad2 and myofibroblasts in their AV compared with littermate controls fed the HFD for 6 months. Our data suggest that platelet-derived TGF-ß1 triggers AS progression by inducing signaling in VEC, and their subsequent transformation into collagen-producing-myofibroblasts. Thus, inhibiting platelet-derived TGF-ß1 might attenuate or prevent fibrotic diseases characterized by platelet activation and high WSS, such as AS.


Asunto(s)
Estenosis de la Válvula Aórtica/prevención & control , Plaquetas/metabolismo , Factor de Crecimiento Transformador beta1/farmacología , Animales , Estenosis de la Válvula Aórtica/diagnóstico por imagen , Estenosis de la Válvula Aórtica/etiología , Estenosis de la Válvula Aórtica/patología , Plaquetas/química , Colágeno/metabolismo , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Células Endoteliales/patología , Ratones , Miofibroblastos/metabolismo , Miofibroblastos/patología , Factor de Crecimiento Transformador beta1/antagonistas & inhibidores , Ultrasonografía/métodos
8.
Blood Adv ; 2(5): 470-480, 2018 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-29490978

RESUMEN

Transforming growth factor-ß1 (TGF-ß1) signaling in hepatic stellate cells (HSCs) plays a primary role in liver fibrosis, but the source of TGF-ß1 is unclear. Because platelets are rich in TGF-ß1, we examined the role of platelet TGF-ß1 in liver fibrosis by challenging wild-type (WT) mice and mice deficient in platelet TGF-ß1 (PF4CreTgfb1f/f) with carbon tetrachloride (CCl4), an inducer of acute hepatic injury and chronic fibrosis. CCl4 elicited equivalent hepatic injury in WT and PF4CreTgfb1f/f mice based on loss of cytochrome P450 (Cyp2e1) expression, observed at 6 hours and peaking at 3 days after CCl4 challenge; PF4CreTgfb1f/f mice exhibited less liver fibrosis than control mice. Activated platelets were observed during acute liver injury (6 hours), and WT mice with transient platelet depletion (thrombocytopenia) were partially protected from developing fibrosis compared with control mice (P = .01), suggesting an association between platelet activation and fibrosis. Transient increases in TGF-ß1 levels and Smad2 phosphorylation signaling were observed 6 hours and 3 days, respectively, after CCl4 challenge in WT, but not PF4CreTgfb1f/f , mice, suggesting that increased TGF-ß1 levels originated from platelet-released TGF-ß1 during the initial injury. Numbers of collagen-producing HSCs and myofibroblasts were higher at 3 days and 36 days, respectively, in WT vs PF4CreTgfb1f/f mice, suggesting that platelet TGF-ß1 may have stimulated HSC transdifferentiation into myofibroblasts. Thus, platelet TGF-ß1 partially contributes to liver fibrosis, most likely by initiating profibrotic signaling in HSCs and collagen synthesis. Further studies are required to evaluate whether blocking platelet and TGF-ß1 activation during acute liver injury prevents liver fibrosis.


Asunto(s)
Plaquetas/química , Cirrosis Hepática/etiología , Hígado/lesiones , Factor de Crecimiento Transformador beta1/farmacología , Animales , Tetracloruro de Carbono , Colágeno/biosíntesis , Células Estrelladas Hepáticas/metabolismo , Hígado/patología , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/prevención & control , Ratones , Activación Plaquetaria
9.
PLoS One ; 12(10): e0187185, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29088262

RESUMEN

Human immunodeficiency virus (HIV) infection is an independent risk factor for cardiovascular disease. This risk is magnified by certain antiretrovirals, particularly the protease inhibitor ritonavir, but the pathophysiology of this connection is unknown. We postulated that a major mechanism for antiretroviral-associated cardiac disease is pathologic fibrosis linked to platelet activation with release and activation of transforming growth factor (TGF)-ß1, and that these changes could be modeled in a murine system. We also sought to intervene utilizing inhaled carbon monoxide (CO) as proof-of-concept for therapeutics capable of regulating TGF-ß1 signaling and collagen autophagy. We demonstrate decreased cardiac function indices, including cardiac output, ejection fraction and stroke volume, and prominent cardiac fibrosis, in mice exposed to pharmacological doses of ritonavir. Cardiac output and fibrosis correlated with plasma TGF-ß1 levels. Mice with targeted deletion of TGF-ß1 in megakaryocytes/platelets (PF4CreTgfb1flox/flox) were partially protected from ritonavir-induced cardiac dysfunction and fibrosis. Inhalation of low dose CO (250ppm), used as a surrogate for upregulation of inducible heme oxygenase/endogenous CO pathways, suppressed ritonavir-induced cardiac fibrosis. This occurred in association with modulation of canonical (Smad2) and non-canonical (p38) TGF-ß1 signaling pathways. In addition, CO treatment suppressed the M1 pro-inflammatory subset of macrophages and increased M2c regulatory cells in the hearts of RTV-exposed animals. The effects of CO were dependent upon autophagy as CO did not mitigate ritonavir-induced fibrosis in autophagy-deficient LC3-/- mice. These results suggest that platelet-derived TGF-ß1 contributes to ritonavir-associated cardiac dysfunction and fibrosis, extending the relevance of our findings to other antiretrovirals that also activate platelets. The anti-fibrotic effects of CO are linked to alterations in TGF-ß1 signaling and autophagy, suggesting a proof-of-concept for novel interventions in HIV/antiretroviral therapy-mediated cardiovascular disease.


Asunto(s)
Plaquetas/metabolismo , Monóxido de Carbono/farmacología , Inhibidores de la Proteasa del VIH/efectos adversos , Cardiopatías/inducido químicamente , Miocardio/patología , Ritonavir/efectos adversos , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Plaquetas/efectos de los fármacos , Gasto Cardíaco/efectos de los fármacos , Ecocardiografía , Fibrosis , Cardiopatías/prevención & control , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Volumen Sistólico/efectos de los fármacos , Factor de Crecimiento Transformador beta1/sangre
10.
Mol Oncol ; 10(6): 806-24, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26887594

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) clinically has a very poor prognosis. No small molecule is available to reliably achieve cures. Meisoindigo is chemically related to the natural product indirubin and showed substantial efficiency in clinical chemotherapy for CML in China. However, its effect on PDAC is still unknown. Our results showed strong anti-proliferation effect of meisoindigo on gemcitabine-resistant PDACs. Using a recently established primary PDAC cell line, called Jopaca-1 with a larger CSCs population as model, we observed a reduction of CD133+ and ESA+/CD44+/CD24+ populations upon treatment and concomitantly a decreased expression of CSC-associated genes, and reduced cellular mobility and sphere formation. Investigating basic cellular metabolic responses, we detected lower oxygen consumption and glucose uptake, while intracellular ROS levels increased. This was effectively neutralized by the addition of antioxidants, indicating an essential role of the cellular redox balance. Further analysis on energy metabolism related signaling revealed that meisoindigo inhibited LKB1, but activated AMPK. Both of them were involved in cellular apoptosis. Additional in situ hybridization in tissue sections of PDAC patients reproducibly demonstrated co-expression and -localization of LKB1 and CD133 in malignant areas. Finally, we detected that CD133+/CD44+ were more vulnerable to meisoindigo, which could be mimicked by LKB1 siRNAs. Our results provide the first evidence, to our knowledge, that LKB1 sustains the CSC population in PDACs and demonstrate a clear benefit of meisoindigo in treatment of gemcitabine-resistant cells. This novel mechanism may provide a promising new treatment option for PDAC.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Antineoplásicos/farmacología , Carcinoma Ductal Pancreático/tratamiento farmacológico , Células Madre Neoplásicas/efectos de los fármacos , Páncreas/efectos de los fármacos , Neoplasias Pancreáticas/tratamiento farmacológico , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Quinasas de la Proteína-Quinasa Activada por el AMP , Apoptosis/efectos de los fármacos , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Humanos , Indoles/farmacología , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Páncreas/metabolismo , Páncreas/patología , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Gemcitabina , Neoplasias Pancreáticas
11.
PLoS One ; 10(10): e0139345, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26488607

RESUMEN

In this study we used differentiated adult human upcyte® cells for the in vitro generation of liver organoids. Upcyte® cells are genetically engineered cell strains derived from primary human cells by lenti-viral transduction of genes or gene combinations inducing transient proliferation capacity (upcyte® process). Proliferating upcyte® cells undergo a finite number of cell divisions, i.e., 20 to 40 population doublings, but upon withdrawal of proliferation stimulating factors, they regain most of the cell specific characteristics of primary cells. When a defined mixture of differentiated human upcyte® cells (hepatocytes, liver sinusoidal endothelial cells (LSECs) and mesenchymal stem cells (MSCs)) was cultured in vitro on a thick layer of Matrigel™, they self-organized to form liver organoid-like structures within 24 hours. When further cultured for 10 days in a bioreactor, these liver organoids show typical functional characteristics of liver parenchyma including activity of cytochromes P450, CYP3A4, CYP2B6 and CYP2C9 as well as mRNA expression of several marker genes and other enzymes. In summary, we hereby describe that 3D functional hepatic structures composed of primary human cell strains can be generated in vitro. They can be cultured for a prolonged period of time and are potentially useful ex vivo models to study liver functions.


Asunto(s)
Células Endoteliales/fisiología , Hepatocitos/fisiología , Hígado/fisiología , Células Madre Mesenquimatosas/fisiología , Organoides/fisiología , Adulto , Albúminas/genética , Albúminas/metabolismo , Reactores Biológicos , Cadherinas/genética , Cadherinas/metabolismo , Diferenciación Celular , Células Cultivadas , Colágeno , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Combinación de Medicamentos , Células Endoteliales/citología , Células Endoteliales/metabolismo , Hepatocitos/citología , Hepatocitos/metabolismo , Humanos , Inmunohistoquímica , Laminina , Hígado/citología , Hígado/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Microscopía Confocal , Organoides/citología , Organoides/metabolismo , Proteoglicanos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Tiempo , Ingeniería de Tejidos/métodos , Proteína de la Zonula Occludens-1/genética , Proteína de la Zonula Occludens-1/metabolismo
12.
PLoS One ; 8(10): e78262, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24147127

RESUMEN

Zonation of metabolic activities within specific structures and cell types is a phenomenon of liver organization and ensures complementarity of variant liver functions like protein production, glucose homeostasis and detoxification. To analyze damage and regeneration of liver tissue in response to a toxic agent, expression of liver specific enzymes was analyzed by in situ hybridization in mouse over a 6 days time course following carbon tetrachloride (CCl4) injection. CCl4 mixed with mineral oil was administered to BALB/c mice by intraperitoneal injection, and mice were sacrificed at different time points post injection. Changes in the expression of albumin (Alb), arginase (Arg1), glutaminase 2 (Gls2), Glutamine synthetase (Gs), glucose-6-phosphatase (G6pc), glycogen synthase 2 (Gys2), Glycerinaldehyd-3-phosphat-Dehydrogenase (Gapdh), Cytochrom p450 2E1 (Cyp2e1) and glucagon receptor (Gcgr) genes in the liver were studied by in situ hybridization and qPCR. We observed significant changes in gene expression of enzymes involved in nitrogen and glucose metabolism and their local distribution following CCl4 injury. We also found that Cyp2e1, the primary metabolizing enzyme for CCl4, was strongly expressed in the pericentral zone during recovery. Furthermore, cells in the damaged area displayed distinct gene expression profiles during the analyzed time course and showed complete recovery with strong albumin production 6 days after CCl4 injection. Our results indicate that despite severe damage, liver cells in the damaged area do not simply die but instead display locally adjusted gene expression supporting damage response and recovery.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Glucosa/metabolismo , Nitrógeno/metabolismo , Animales , Tetracloruro de Carbono/toxicidad , Inmunohistoquímica , Hibridación in Situ , Hígado/lesiones , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA