Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Biosci (Landmark Ed) ; 29(7): 251, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39082337

RESUMEN

BACKGROUND: Selective deprivation of glutamine has been shown to accelerate the generation of reactive oxygen species (ROS) and to impair the activity of a specific pentose phosphate pathway (PPP) located within the endoplasmic reticulum (ER). The consequent oxidative damage suggests that glucose flux through this reticular pathway might contribute to the redox stress of breast cancer cells. We thus evaluated whether this response is reproduced when the glutamine shortage is coupled with the glucose deprivation. METHODS: Cancer growth, metabolic plasticity and redox status were evaluated under saturating conditions and after 48 h starvation (glucose 2.5 mM, glutamine 0.5 mM). The Seahorse technology was used to estimate adenosine triphosphate (ATP)-linked and ATP-independent oxygen consumption rate (OCR) as well as proton efflux rate (PER). 18F-fluoro-deoxy-glucose (FDG) uptake was evaluated through the LigandTracer device. Proliferation rate was estimated by the carboxyfluorescein-diacetate-succinimidyl ester (CFSE) staining, while cell viability by the propidium iodide exclusion assay. RESULTS: Starvation reduced the proliferation rate of MCF-7 cells without affecting their viability. It also decreased lactate release and PER. Overall OCR was left unchanged although ATP-synthase dependent fraction was increased under nutrient shortage. Glutaminolysis inhibition selectively impaired the ATP-independent and the oligomycin-sensitive OCR in control and starved cultures, respectively. The combined nutrient shortage decreased the cytosolic and mitochondrial markers of redox stress. It also left unchanged the expression of the reticular unfolded protein marker GRP78. By contrast, starvation decreased the expression of hexose-6P-dehydrogenase (H6PD) thus decreasing the glucose flux through the ER-PPP as documented by the profound impairment in the uptake rate of FDG. CONCLUSIONS: When combined with glucose deprivation, glutamine shortage does not elicit the expected enhancement of ROS generation in the studied breast cancer cell line. Combined with the decreased activity of ER-PPP, this observation suggests that glutamine interferes with the reticular glucose metabolism to regulate the cell redox balance.


Asunto(s)
Neoplasias de la Mama , Chaperón BiP del Retículo Endoplásmico , Glucosa , Glutamina , Humanos , Glutamina/metabolismo , Glucosa/metabolismo , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Femenino , Células MCF-7 , Chaperón BiP del Retículo Endoplásmico/metabolismo , Proliferación Celular/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Consumo de Oxígeno , Oxidación-Reducción , Supervivencia Celular/efectos de los fármacos
2.
Redox Biol ; 75: 103241, 2024 09.
Artículo en Inglés | MEDLINE | ID: mdl-38901103

RESUMEN

BACKGROUND: We previously demonstrated that the human amniotic fluid (hAF) from II trimester of gestation is a feasible source of stromal progenitors (human amniotic fluid stem cells, hAFSC), with significant paracrine potential for regenerative medicine. Extracellular vesicles (EVs) separated and concentrated from hAFSC secretome can deliver pro-survival, proliferative, anti-fibrotic and cardioprotective effects in preclinical models of skeletal and cardiac muscle injury. While hAFSC-EVs isolation can be significantly influenced by in vitro cell culture, here we profiled EVs directly concentrated from hAF as an alternative option and investigated their paracrine potential against oxidative stress. METHODS: II trimester hAF samples were obtained as leftover material from prenatal diagnostic amniocentesis following written informed consent. EVs were separated by size exclusion chromatography and concentrated by ultracentrifugation. hAF-EVs were assessed by nanoparticle tracking analysis, transmission electron microscopy, Western Blot, and flow cytometry; their metabolic activity was evaluated by oximetric and luminometric analyses and their cargo profiled by proteomics and RNA sequencing. hAF-EV paracrine potential was tested in preclinical in vitro models of oxidative stress and dysfunction on murine C2C12 cells and on 3D human cardiac microtissue. RESULTS: Our protocol resulted in a yield of 6.31 ± 0.98 × 109 EVs particles per hAF milliliter showing round cup-shaped morphology and 209.63 ± 6.10 nm average size, with relevant expression of CD81, CD63 and CD9 tetraspanin markers. hAF-EVs were enriched in CD133/1, CD326, CD24, CD29, and SSEA4 and able to produce ATP by oxygen consumption. While oxidative stress significantly reduced C2C12 survival, hAF-EV priming resulted in significant rescue of cell viability, with notable recovery of ATP synthesis and concomitant reduction of cell damage and lipid peroxidation activity. 3D human cardiac microtissues treated with hAF-EVs and experiencing H2O2 stress and TGFß stimulation showed improved survival with a remarkable decrease in the onset of fibrosis. CONCLUSIONS: Our results suggest that leftover samples of II trimester human amniotic fluid can represent a feasible source of EVs to counteract oxidative damage on target cells, thus offering a novel candidate therapeutic option to counteract skeletal and cardiac muscle injury.


Asunto(s)
Líquido Amniótico , Vesículas Extracelulares , Estrés Oxidativo , Comunicación Paracrina , Segundo Trimestre del Embarazo , Humanos , Vesículas Extracelulares/metabolismo , Líquido Amniótico/metabolismo , Líquido Amniótico/citología , Embarazo , Femenino , Ratones , Segundo Trimestre del Embarazo/metabolismo , Animales , Línea Celular
3.
Theranostics ; 13(5): 1470-1489, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37056573

RESUMEN

Rationale: Mesenchymal stromal cells (MSCs)-derived extracellular vesicles (EVs) emerged as an innovative strategy for the treatment of chronic disorders such as osteoarthritis (OA). Biological activity of EVs is generally driven by their cargo, which might be influenced by microenvironment. Therefore, pre-conditioning strategies, including modifications in culture conditions or oxygen tension could directly impact on MSCs paracrine activity. In this study we selected an appropriate preconditioning system to induce cells to perform the most suitable therapeutic response by EV-encapsulated bioactive factors. Methods: A xeno-free supplement (XFS) was used for isolation and expansion of MSCs and compared to conventional fetal bovine serum (FBS) culture. Bone Marrow-derived MSCs (BMSCs) were pre-conditioned under normoxia (20% O2) or under hypoxia (1% O2) and EVs production was evaluated. Anti-OA activity was evaluated by using an in vitro inflammatory model. miRNA content was also explored, to select putative miRNA that could be involved in a biological function. Results: Modulation of IL-6, IL-8, COX-2 and PGE2 was evaluated on hACs simultaneously treated with IL-1α and BMSC-derived EVs. FBS-sEVs exerted a blunt inhibitory effect, while a strong anti-inflammatory outcome was achieved by XFS-sEVs. Interestingly, in both cases hypoxia pre-conditioning allowed to increase EVs effectiveness. Analysis of miRNA content showed the upregulation in XFS-hBMSC-derived EVs of miRNA known to have a chondroprotective role, such as let-7b-5p, miR-17, miR-145, miR-21-5p, miR-214-3p, miR-30b-5p, miR-30c-5p. Activated pathways and target genes were investigated in silico and upregulated miRNAs functionally validated in target cells. MiR-145 and miR-214 were found to protect chondrocytes from IL-1α-induced inflammation and to reduce production of pro-inflammatory cytokines. Conclusions: XFS medium was found to be suitable for isolation and expansion of MSCs, secreting EVs with a therapeutic cargo. The application of cells cultured exclusively in XFS overcomes issues of safety associated with serum-containing media and makes ready-to-use clinical therapies more accessible.


Asunto(s)
Técnicas de Cultivo de Célula , Células Madre Mesenquimatosas , MicroARNs , Osteoartritis , Humanos , Células Madre Mesenquimatosas/química , Células Madre Mesenquimatosas/citología , Vesículas Extracelulares/química , Osteoartritis/metabolismo , Osteoartritis/terapia , Cartílago/patología , FN-kappa B/metabolismo , Dinoprostona/metabolismo , Condrocitos/metabolismo , MicroARNs/química , Albúmina Sérica Bovina/química , Interleucina-1alfa/metabolismo , Técnicas In Vitro
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA