RESUMEN
Congenital diaphragmatic hernia (CDH) is a relatively common and genetically heterogeneous structural birth defect associated with high mortality and morbidity. We describe eight unrelated families with an X-linked condition characterized by diaphragm defects, variable anterior body-wall anomalies, and/or facial dysmorphism. Using linkage analysis and exome or genome sequencing, we found that missense variants in plastin 3 (PLS3), a gene encoding an actin bundling protein, co-segregate with disease in all families. Loss-of-function variants in PLS3 have been previously associated with X-linked osteoporosis (MIM: 300910), so we used in silico protein modeling and a mouse model to address these seemingly disparate clinical phenotypes. The missense variants in individuals with CDH are located within the actin-binding domains of the protein but are not predicted to affect protein structure, whereas the variants in individuals with osteoporosis are predicted to result in loss of function. A mouse knockin model of a variant identified in one of the CDH-affected families, c.1497G>C (p.Trp499Cys), shows partial perinatal lethality and recapitulates the key findings of the human phenotype, including diaphragm and abdominal-wall defects. Both the mouse model and one adult human male with a CDH-associated PLS3 variant were observed to have increased rather than decreased bone mineral density. Together, these clinical and functional data in humans and mice reveal that specific missense variants affecting the actin-binding domains of PLS3 might have a gain-of-function effect and cause a Mendelian congenital disorder.
Asunto(s)
Hernias Diafragmáticas Congénitas , Osteoporosis , Adulto , Humanos , Masculino , Animales , Ratones , Hernias Diafragmáticas Congénitas/genética , Actinas/genética , Mutación Missense/genética , Osteoporosis/genéticaRESUMEN
Human vertebral malformations (VMs) have an estimated incidence of 1/2000 and are associated with significant health problems including congenital scoliosis (CS) and recurrent organ system malformation syndromes such as VACTERL (vertebral anomalies; anal abnormalities; cardiac abnormalities; tracheo-esophageal fistula; renal anomalies; limb anomalies). The genetic cause for the vast majority of VMs are unknown. In a CS/VM patient cohort, three COL11A2 variants (R130W, R1407L and R1413H) were identified in two patients with cervical VM. A third patient with a T9 hemivertebra and the R130W variant was identified from a separate study. These substitutions are predicted to be damaging to protein function, and R130 and R1407 residues are conserved in zebrafish Col11a2. To determine the role for COL11A2 in vertebral development, CRISPR/Cas9 was used to create a nonsense mutation (col11a2L642*) as well as a full gene locus deletion (col11a2del) in zebrafish. Both col11a2L642*/L642* and col11a2del/del mutant zebrafish exhibit vertebral fusions in the caudal spine, which form due to mineralization across intervertebral segments. To determine the functional consequence of VM-associated variants, we assayed their ability to suppress col11a2del VM phenotypes following transgenic expression within the developing spine. While wildtype col11a2 expression suppresses fusions in col11a2del/+ and col11a2del/del backgrounds, patient missense variant-bearing col11a2 failed to rescue the loss-of-function phenotype in these animals. These results highlight an essential role for COL11A2 in vertebral development and support a pathogenic role for two missense variants in CS.
Asunto(s)
Anomalías Múltiples , Escoliosis , Animales , Humanos , Escoliosis/genética , Pez Cebra/genética , Columna Vertebral/anomalías , Anomalías Múltiples/genética , Mutación Missense , Colágeno Tipo XI/genéticaRESUMEN
The delineation of disease entities is complex, yet recent advances in the molecular characterization of diseases provide opportunities to designate diseases in a biologically valid manner. Here, we have formalized an approach to the delineation of Mendelian genetic disorders that encompasses two distinct but inter-related concepts: (1) the gene that is mutated and (2) the phenotypic descriptor, preferably a recognizably distinct phenotype. We assert that only by a combinatorial or dyadic approach taking both of these attributes into account can a unitary, distinct genetic disorder be designated. We propose that all Mendelian disorders should be designated as "GENE-related phenotype descriptor" (e.g., "CFTR-related cystic fibrosis"). This approach to delineating and naming disorders reconciles the complexity of gene-to-phenotype relationships in a simple and clear manner yet communicates the complexity and nuance of these relationships.
Asunto(s)
Enfermedades Genéticas Congénitas/diagnóstico , Enfermedades Genéticas Congénitas/genética , Genómica/métodos , Fibrosis Quística/diagnóstico , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Genotipo , Humanos , Mutación/genética , FenotipoRESUMEN
PURPOSE: Arthrogryposis multiplex congenita (AMC) describes a heterogeneous group of rare congenital conditions. Health-related quality of life (HRQL) may be reduced in AMC due to broadly heterogeneous physical impairments and participation limitations. This study described HRQL in children and youth with AMC, compared HRQL between child self- and parent-proxy reports, and identified factors associated with better/worse HRQL. METHODS: Data on 205 children with AMC (age 8-21 years) from a North American AMC registry across eight hospital sites was used. HRQL was assessed cross-sectionally using the Patient Reported Outcome Measurement Information System (PROMIS) and European Quality of Life-5 Dimensions-Youth-3 Levels (EQ-5D-Y-3 L) by self-report, parent proxy-report or both. RESULTS: Mean child-reported PROMIS T-scores were significantly lower than the normal mean for the Upper Extremity (mean = 33.0) and Mobility (mean = 37.2) but in the normal range for Pain Interference (mean = 46.6) and Peer Relationships (mean = 51.7). A lot of problems in EQ-5D-Y-3 L was reported by 37% in Feeling Worried/ Sad/ Unhappy, 46% in Having Pain/Discomfort, 50% in Doing Usual Activities, 56% in Mobility, and 57% in Looking After Myself. Compared to child-report, parents reported significantly worse PROMIS T-scores and higher problems in EQ-5D domains. Wheelchair use, being small for gestational age, prolonged hospitalization after birth, increased number of orthopedic surgeries, and caregiver's stress were associated with lower HRQL scores. CONCLUSION: Findings indicate the importance of considering both the child's and parents' reports of HRQL, and to provide multimodal interventions that focus on the effect of childhood and parental characteristics to promote HRQL among children with AMC.
Our study describes health aspects of quality of life (HRQL) in a large sample of children with arthrogryposis multiplex congenita (AMC). Information on HRQL is crucial for clinicians treating AMC to improve treatment outcomes, and for individuals with AMC and their families to understand various aspects of life in AMC. Our results showed that most children with AMC have mild to moderate problems in mobility (e.g., getting around, walking), self-care (e.g., taking shower), and doing usual activities. We found that the parents tend to perceive worsened HRQL for the child with AMC. Our findings also showed that children who had low birthweight for gestational age, were hospitalized for prolonged periods as an infant, had multiple orthopedic surgeries, and use a wheelchair are more likely to have lower HRQL. Children who have a parent who expressed high caretaking stress tend to have lower mobility and physical functioning. Our findings will help develop more personalized care plans for children with AMC considering various individual and familial characteristics.
RESUMEN
The use of expanded carrier screening (ECS) to assess reproductive risk for autosomal recessive (AR) or X-linked recessive (XLR) conditions has been increasingly integrated into obstetrical care. The aim of this study was to determine what proportion of pediatric patients seen by a medical genetics practice could have had their diagnosis predicted if the parent(s) had undergone currently available ECS at the time of data collection in 2021. A retrospective chart review of patients seen for a medical genetic evaluation at a large academic institution was performed from June 1, 2017, through June 1, 2020. At this institution, 8% of patients were diagnosed with an AR or XLR condition. Of these patients, 61% of the diagnoses could have been predicted in advance if the parent(s) had undergone ECS via the panel referenced in this study. The results of this study highlight the broad range of conditions currently seen in a clinical setting that could be identified as a risk prior to or during pregnancy via ECS. In the prenatal setting, ascertainment of reproductive risk via ECS enables prospective parents to undertake interventions such as prenatal and preimplantation genetic diagnosis. For parents who decline reproductive risk-reducing measures, knowledge about neonatal risk allows for prompt confirmatory testing. In the pediatric setting, the option of early and focused testing can benefit affected individuals and their families.
RESUMEN
Myhre syndrome is a connective tissue disorder characterized by congenital cardiovascular, craniofacial, respiratory, skeletal, and cutaneous anomalies as well as intellectual disability and progressive fibrosis. It is caused by germline variants in the transcriptional co-regulator SMAD4 that localize at two positions within the SMAD4 protein, I500 and R496, with I500 V/T/M variants more commonly identified in individuals with Myhre syndrome. Here we assess the functional impact of SMAD4-I500V variant, identified in two previously unpublished individuals with Myhre syndrome, and provide novel insights into the molecular mechanism of SMAD4-I500V dysfunction. We show that SMAD4-I500V can dimerize, but its transcriptional activity is severely compromised. Our data show that SMAD4-I500V acts dominant-negatively on SMAD4 and on receptor-regulated SMADs, affecting transcription of target genes. Furthermore, SMAD4-I500V impacts the transcription and function of crucial developmental transcription regulator, NKX2-5. Overall, our data reveal a dominant-negative model of disease for SMAD4-I500V where the function of SMAD4 encoded on the remaining allele, and of co-factors, are perturbed by the continued heterodimerization of the variant, leading to dysregulation of TGF and BMP signaling. Our findings not only provide novel insights into the mechanism of Myhre syndrome pathogenesis but also extend the current knowledge of how pathogenic variants in SMAD proteins cause disease.
Asunto(s)
Deformidades Congénitas de la Mano , Discapacidad Intelectual , Humanos , Discapacidad Intelectual/genética , Proteína Smad4/genética , Mutación , Deformidades Congénitas de la Mano/genética , Factor de Crecimiento Transformador beta/genéticaRESUMEN
The genetic causes of multiple congenital anomalies are incompletely understood. Here, we report novel heterozygous predicted loss-of-function (LoF) and predicted damaging missense variants in the WW domain binding protein 11 (WBP11) gene in seven unrelated families with a variety of overlapping congenital malformations, including cardiac, vertebral, tracheo-esophageal, renal and limb defects. WBP11 encodes a component of the spliceosome with the ability to activate pre-messenger RNA splicing. We generated a Wbp11 null allele in mouse using CRISPR-Cas9 targeting. Wbp11 homozygous null embryos die prior to E8.5, indicating that Wbp11 is essential for development. Fewer Wbp11 heterozygous null mice are found than expected due to embryonic and postnatal death. Importantly, Wbp11 heterozygous null mice are small and exhibit defects in axial skeleton, kidneys and esophagus, similar to the affected individuals, supporting the role of WBP11 haploinsufficiency in the development of congenital malformations in humans. LoF WBP11 variants should be considered as a possible cause of VACTERL association as well as isolated Klippel-Feil syndrome, renal agenesis or esophageal atresia.
Asunto(s)
Anomalías Múltiples/genética , Proteínas de Unión al ADN/genética , Haploinsuficiencia/genética , Riñón/metabolismo , Factores de Empalme de ARN/genética , Anomalías Múltiples/patología , Canal Anal/anomalías , Canal Anal/patología , Animales , Esófago/anomalías , Esófago/metabolismo , Esófago/patología , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/patología , Heterocigoto , Humanos , Riñón/anomalías , Riñón/patología , Deformidades Congénitas de las Extremidades/genética , Deformidades Congénitas de las Extremidades/patología , Mutación con Pérdida de Función/genética , Ratones , Empalme del ARN/genética , Columna Vertebral/anomalías , Columna Vertebral/patología , Tráquea/anomalías , Tráquea/patologíaRESUMEN
TBX6 encodes transcription-factor box 6, a transcription factor critical to paraxial mesoderm segmentation and somitogenesis during embryonic development. TBX6 haploinsufficiency is believed to drive the skeletal and kidney phenotypes associated with the 16p11.2 deletion syndrome. Heterozygous and biallelic variants in TBX6 are associated with vertebral and rib malformations (TBX6-associated congenital scoliosis) and spondylocostal dysostosis, and heterozygous TBX6 variants are associated with increased risk of genitourinary tract malformations. Combined skeletal and kidney phenotypes in individuals harboring heterozygous or biallelic TBX6 variants are rare. Here, we present seven individuals with vertebral and rib malformations and structural kidney differences associated with heterozygous TBX6 gene deletion in trans with a hypomorphic TBX6 allele or biallelic TBX6 variants. Our case series highlights the association between TBX6 and both skeletal and kidney disease.
Asunto(s)
Osteocondrodisplasias , Escoliosis , Humanos , Proteínas de Dominio T Box/genética , Escoliosis/genética , Columna Vertebral/diagnóstico por imagen , Columna Vertebral/anomalías , Fenotipo , Factores de Transcripción/genética , Túbulos Renales ProximalesRESUMEN
Steel syndrome was initially described by H. H. Steel in 1993 in Puerto Rico, at which time he described the clinical findings required for diagnosis. The responsible gene, COL27A1, was identified in 2015 (Gonzaga-Jauregui et al., European Journal of Human Genetics, 2015;23:342-346). Eleven patients have previously been described with Steel syndrome and homozygous COL27A1 mutations, with eight having an apparent founder mutation, p.Gly697Arg. We describe three more patients identified at Einstein Medical Center Philadelphia and St. Christopher's Hospital for Children (Philadelphia, PA) diagnosed with Steel syndrome. All three are of Puerto Rican ancestry with the previously described founder mutation and had either hip dislocations or hip dysplasia. Radial head dislocation was only identified in one patient while short stature and scoliosis were noted in two of these patients. There are now 51 patients in the literature with Steel syndrome, including the 3 patients in this article, and 14 patients with a genetically confirmed Steel syndrome diagnosis.
Asunto(s)
Colágenos Fibrilares/genética , Trastornos del Crecimiento/patología , Luxación de la Cadera/patología , Mutación , Escoliosis/patología , Adolescente , Niño , Femenino , Trastornos del Crecimiento/genética , Luxación de la Cadera/genética , Humanos , Lactante , Masculino , Philadelphia , Puerto Rico , Escoliosis/genéticaRESUMEN
Vertebral malformations (VMs) are caused by alterations in somitogenesis and may occur in association with other congenital anomalies. The genetic etiology of most VMs remains unknown and their identification may facilitate the development of novel therapeutic and prevention strategies. Exome sequencing was performed on both the discovery cohort of nine unrelated probands from the USA with VMs and the replication cohort from China (Deciphering Disorders Involving Scoliosis & COmorbidities study). The discovery cohort was analyzed using the PhenoDB analysis tool. Heterozygous and homozygous, rare and functional variants were selected and evaluated for their ClinVar, HGMD, OMIM, GWAS, mouse model phenotypes, and other annotations to identify the best candidates. Genes with candidate variants in three or more probands were selected. The replication cohort was analyzed by another in-house developed pipeline. We identified rare heterozygous variants in KIAA1217 in four out of nine probands in the discovery cohort and in five out of 35 probands in the replication cohort. Collectively, we identified 11 KIAA1217 rare variants in 10 probands, three of which have not been described in gnomAD and one of which is a nonsense variant. We propose that genetic variations of KIAA1217 may contribute to the etiology of VMs.
Asunto(s)
Proteínas/genética , Enfermedades de la Columna Vertebral/genética , Adolescente , Vértebras Cervicales/anomalías , Niño , Codón sin Sentido , Bases de Datos Genéticas , Femenino , Heterocigoto , Homocigoto , Humanos , Masculino , Enfermedades de la Columna Vertebral/etiología , Vértebras Torácicas/anomalíasRESUMEN
INTRODUCTION: Adolescent idiopathic scoliosis (AIS) is a common musculoskeletal disorder with strong evidence for a genetic contribution. CNVs play an important role in congenital scoliosis, but their role in idiopathic scoliosis has been largely unexplored. METHODS: Exome sequence data from 1197 AIS cases and 1664 in-house controls was analysed using coverage data to identify rare CNVs. CNV calls were filtered to include only highly confident CNVs with >10 average reads per region and mean log-ratio of coverage consistent with single-copy duplication or deletion. The frequency of 55 common recurrent CNVs was determined and correlated with clinical characteristics. RESULTS: Distal chromosome 16p11.2 microduplications containing the gene SH2B1 were found in 0.7% of AIS cases (8/1197). We replicated this finding in two additional AIS cohorts (8/1097 and 2/433), resulting in 0.7% (18/2727) of all AIS cases harbouring a chromosome 16p11.2 microduplication, compared with 0.06% of local controls (1/1664) and 0.04% of published controls (8/19584) (p=2.28×10-11, OR=16.15). Furthermore, examination of electronic health records of 92 455 patients from the Geisinger health system showed scoliosis in 30% (20/66) patients with chromosome 16p11.2 microduplications containing SH2B1 compared with 7.6% (10/132) of controls (p=5.6×10-4, OR=3.9). CONCLUSIONS: Recurrent distal chromosome 16p11.2 duplications explain nearly 1% of AIS. Distal chromosome 16p11.2 duplications may contribute to scoliosis pathogenesis by directly impairing growth or by altering expression of nearby genes, such as TBX6. Individuals with distal chromosome 16p11.2 microduplications should be screened for scoliosis to facilitate early treatment.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Duplicación Cromosómica , Cromosomas Humanos Par 16 , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Escoliosis/diagnóstico , Escoliosis/genética , Estudios de Casos y Controles , Mapeo Cromosómico , Biología Computacional/métodos , Variaciones en el Número de Copia de ADN , Femenino , Estudios de Asociación Genética/métodos , Heterocigoto , Humanos , Masculino , Fenotipo , Escoliosis/epidemiología , Eliminación de Secuencia , Secuenciación del ExomaRESUMEN
Arthrogryposis multiplex congenita, or AMC, is a clinical sign defined as congenital contractures of at least two joint levels. These joint contractures are always secondary to diminished fetal movement which can have numerous causes that affect any part of the anatomical structures implicated in movement: the central nervous system, the anterior horn cell, the nerve, the neuromuscular junction, the muscle, or the joint itself. Make a precise diagnosis of the cause in a patient with multiple joint contractures is therefore challenging. The aim of this article is to summarize the use and diagnostic value of common examinations and analyses performed postnatally in patients affected by AMC from a literature review. We also compare this data with results from our clinical practice. Even though it is difficult to give precise guidelines today, it appears that genetic studies, such as whole exome or genome analysis in all patients and chromosomal microarray analysis in patients with intellectual disability and AMC should be preferred as first tier investigations over EMG and muscle biopsy.
Asunto(s)
Artrogriposis/diagnóstico , Artrogriposis/genética , Estudio de Asociación del Genoma Completo/métodos , Humanos , Discapacidad Intelectual/genéticaRESUMEN
Scoliosis represents the most common musculoskeletal disorder in children and affects approximately 3% of the world population. Scoliosis is separated into two major phenotypic classifications: congenital and idiopathic. Idiopathic scoliosis is defined as a curvature of the spine of 10° or greater visualized on plane radiograph and does not have associated vertebral malformations (VM). "Congenital" scoliosis (CS) due to malformations in vertebrae is frequently associated with other birth defects. Recently, significant advances have been made in understanding the genetic basis of both conditions. There is evidence that both conditions are etiologically related. A 2-day conference entitled "Genomic Approaches to Understanding and Treating Scoliosis" was held at Scottish Rite Hospital for Children in Dallas, Texas, to synergize research in this field. This first combined, multidisciplinary conference featured international scoliosis researchers in basic and clinical sciences. A major outcome of the conference advancing scoliosis research was the proposal and subsequent vote in favor of merging the International Consortium for Vertebral Anomalies and Scoliosis (ICVAS) and International Consortium for Scoliosis Genetics (ICSG) into a single entity called International Consortium for Spinal Genetics, Development, and Disease (ICSGDD). The ICSGDD is proposed to meet annually as a forum to synergize multidisciplinary spine deformity research.
Asunto(s)
Escoliosis/diagnóstico , Escoliosis/genética , HumanosRESUMEN
INTRODUCTION: The PhenX Toolkit, an online resource of well-established measures of phenotypes and exposures, now has 16 new measures recommended for assessing rare genetic conditions. MATERIALS AND METHODS: These measures and their protocols were selected by a working group of domain experts with input from the scientific community. RESULTS: The measures, which cover life stages from birth through adulthood, include clinical scales, characterization of rare genetic conditions, bioassays, and questionnaires. Most are broadly applicable to rare genetic conditions (e.g., family history, growth charts, bone age, and body proportions). Some protocols (e.g., sweat chloride test) target specific conditions. DISCUSSION: The rare genetic condition measures complement the existing measures in the PhenX Toolkit that cover anthropometrics, demographics, mental health, and reproductive history. They are directed at research pertaining to common and complex diseases. PhenX measures are publicly available and are recommended to help standardize assessments across a range of biomedical study designs. To facilitate incorporation of measures into human subjects' research, the Toolkit offers data collection worksheets and compatible data dictionaries. CONCLUSION: Widespread use of standard PhenX measures in clinical, translational, and epidemiological research will enable more uniform cross-study comparisons and increase statistical power with the potential for enhancing scientific discovery.Genet Med advance online publication 12 January 2017.
Asunto(s)
Enfermedades Raras/diagnóstico , Enfermedades Raras/genética , Programas Informáticos/normas , Humanos , Internet , Sistemas en Línea , Fenotipo , Estándares de Referencia , Encuestas y CuestionariosAsunto(s)
Trastornos del Neurodesarrollo/genética , Adolescente , Niño , Preescolar , Humanos , LactanteRESUMEN
Diaphanospondylodysostosis (DSD) and ischiospinal dysostosis (ISD) are both rare skeletal dysplasias consisting of abnormal axial skeletal development but normal appendicular skeletal development. Both disorders recently have been found to result from mutations in the BMPER gene. We report a patient with one deletion and one mutation of the BMPER gene who has features most consistent with DSD but who has survived to age 9 years. Survival suggests that DSD and ISD reflect a spectrum of severity of one disease process.
Asunto(s)
Proteínas Portadoras/genética , Anomalías Craneofaciales/genética , Disostosis/genética , Isquion/patología , Mutación , Costillas/anomalías , Columna Vertebral/anomalías , Niño , Anomalías Craneofaciales/patología , Disostosis/patología , Humanos , Masculino , Pronóstico , Costillas/patología , Columna Vertebral/patologíaRESUMEN
We report on a family in which initial features were compatible with Fryns syndrome. The first sibling was a stillborn female with a left diaphragmatic hernia (DH). Her clinical features overlapped with Fryns syndrome. The second pregnancy, a male fetus, was followed for polyhydramnios, hypoplastic mandible, mild enlargement of the fetal bladder, hydronephrosis, and rocker bottom foot deformities. He had facial features similar to his sibling and a large cleft of the secondary palate, small jaw, and secundum atrial septal defect. He underwent surgical repair of imperforate anus, intestinal malrotation, and placement of mucous fistula for biopsy positive Hirschsprung disease. An elevated alkaline phosphatase level of 1569 U/L was reported. Whole exome sequencing performed on the second child demonstrated compound heterozygosity for the PIGV gene with the p.A341E and p.A418D variants in trans. Hyperphosphatasia with mental retardation syndrome (HPMRS) is caused by mutations in PIGV and includes hyperphosphatasia as a diagnostic hallmark. Our patient exhibited hyperphosphatasia but without any storage material in his skin cells. His features remain similar to his sister's, but includes seizures and lacks diaphragmatic hernia. Until now, HPMRS and Fryns syndrome, despite overlapping features, were considered mutually exclusive as HPMRS involves hyperphosphatasia and Fryns typically exhibits DH. Recent identification of PIGN mutations associated with several cases of Fryns syndrome point to a common pathogenetic etiology involving inborn errors of the glycosylphosphatidylinositiol anchor biosynthetic pathway. A diagnosis of HPMRS should be considered when DH is encountered on prenatal ultrasound.
Asunto(s)
Anomalías Múltiples/patología , Hernia Diafragmática/patología , Hernias Diafragmáticas Congénitas/patología , Discapacidad Intelectual/patología , Deformidades Congénitas de las Extremidades/patología , Trastornos del Metabolismo del Fósforo/patología , Adulto , Facies , Resultado Fatal , Femenino , Humanos , Lactante , Masculino , Fenotipo , Embarazo , Diagnóstico PrenatalRESUMEN
VACTERL association is a condition comprising multisystem congenital malformations, causing severe physical disability in affected individuals. It is typically defined by the concurrence of at least three of the following component features: vertebral anomalies (V), anal atresia (A), cardiac malformations (C), tracheo-oesophageal fistula (TE), renal dysplasia (R) and limb abnormalities (L). Vertebral anomaly is one of the most important and common defects that has been reported in approximately 60-95% of all VACTERL patients. Recent breakthroughs have suggested that genetic factors play an important role in VACTERL association, especially in those with vertebral phenotypes. In this review, we summarised the genetic studies of the VACTERL association, especially focusing on the genetic aetiology of patients with vertebral anomalies. Furthermore, genetic reports of other syndromes with vertebral phenotypes overlapping with VACTERL association are also included. We aim to provide a further understanding of the genetic aetiology and a better evidence for genetic diagnosis of the association and vertebral anomalies.