Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Neuroinflammation ; 17(1): 159, 2020 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-32429943

RESUMEN

BACKGROUND: Cosmic radiation exposures have been found to elicit cognitive impairments involving a wide-range of underlying neuropathology including elevated oxidative stress, neural stem cell loss, and compromised neuronal architecture. Cognitive impairments have also been associated with sustained microglia activation following low dose exposure to helium ions. Space-relevant charged particles elicit neuroinflammation that persists long-term post-irradiation. Here, we investigated the potential neurocognitive benefits of microglia depletion following low dose whole body exposure to helium ions. METHODS: Adult mice were administered a dietary inhibitor (PLX5622) of colony stimulating factor-1 receptor (CSF1R) to deplete microglia 2 weeks after whole body helium irradiation (4He, 30 cGy, 400 MeV/n). Cohorts of mice maintained on a normal and PLX5622 diet were tested for cognitive function using seven independent behavioral tasks, microglial activation, hippocampal neuronal morphology, spine density, and electrophysiology properties 4-6 weeks later. RESULTS: PLX5622 treatment caused a rapid and near complete elimination of microglia in the brain within 3 days of treatment. Irradiated animals on normal diet exhibited a range of behavioral deficits involving the medial pre-frontal cortex and hippocampus and increased microglial activation. Animals on PLX5622 diet exhibited no radiation-induced cognitive deficits, and expression of resting and activated microglia were almost completely abolished, without any effects on the oligodendrocyte progenitors, throughout the brain. While PLX5622 treatment was found to attenuate radiation-induced increases in post-synaptic density protein 95 (PSD-95) puncta and to preserve mushroom type spine densities, other morphologic features of neurons and electrophysiologic measures of intrinsic excitability were relatively unaffected. CONCLUSIONS: Our data suggest that microglia play a critical role in cosmic radiation-induced cognitive deficits in mice and, that approaches targeting microglial function are poised to provide considerable benefit to the brain exposed to charged particles.


Asunto(s)
Encéfalo/efectos de la radiación , Helio/toxicidad , Microglía , Traumatismos Experimentales por Radiación/patología , Animales , Disfunción Cognitiva/etiología , Radiación Cósmica/efectos adversos , Masculino , Ratones
2.
Proc Natl Acad Sci U S A ; 113(17): 4836-41, 2016 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-27044087

RESUMEN

Cancer survivors face a variety of challenges as they cope with disease recurrence and a myriad of normal tissue complications brought on by radio- and chemotherapeutic treatment regimens. For patients subjected to cranial irradiation for the control of CNS malignancy, progressive and debilitating cognitive dysfunction remains a pressing unmet medical need. Although this problem has been recognized for decades, few if any satisfactory long-term solutions exist to resolve this serious unintended side effect of radiotherapy. Past work from our laboratory has demonstrated the neurocognitive benefits of human neural stem cell (hNSC) grafting in the irradiated brain, where intrahippocampal transplantation of hNSC ameliorated radiation-induced cognitive deficits. Using a similar strategy, we now provide, to our knowledge, the first evidence that cranial grafting of microvesicles secreted from hNSC affords similar neuroprotective phenotypes after head-only irradiation. Cortical- and hippocampal-based deficits found 1 mo after irradiation were completely resolved in animals cranially grafted with microvesicles. Microvesicle treatment was found to attenuate neuroinflammation and preserve host neuronal morphology in distinct regions of the brain. These data suggest that the neuroprotective properties of microvesicles act through a trophic support mechanism that reduces inflammation and preserves the structural integrity of the irradiated microenvironment.


Asunto(s)
Daño Encefálico Crónico/terapia , Micropartículas Derivadas de Células/trasplante , Trastornos del Conocimiento/terapia , Irradiación Craneana/efectos adversos , Hipocampo/fisiología , Células-Madre Neurales/ultraestructura , Traumatismos Experimentales por Radiación/terapia , Amígdala del Cerebelo/ultraestructura , Animales , Daño Encefálico Crónico/etiología , Células Cultivadas , Trastornos del Conocimiento/etiología , Genes Reporteros , Habituación Psicofisiológica/fisiología , Xenoinjertos , Hipocampo/ultraestructura , Humanos , Masculino , Microglía/fisiología , Neocórtex/ultraestructura , Ratas , Ratas Desnudas
3.
Cancer Res ; 81(7): 1732-1744, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33323383

RESUMEN

The adverse neurocognitive sequelae following clinical radiotherapy (RT) for central nervous system (CNS) malignancies are often long-lasting without any clinical recourse. Despite recent progress, the cellular mechanisms mediating RT-induced cognitive deficits (RICD) are poorly understood. The complement system is an immediate sensor of a disturbed inflammatory environment and a potent mediator of gliosis with a range of nonimmune functions in the CNS, including synaptic pruning, which is detrimental if dysregulated. We hypothesize that complement-mediated changes in glial cell function significantly contribute to RICD. The underlying alterations in CNS complement cascade proteins (C1q, C3), TLR4, and colabeling with glia (IBA1, GFAP) were examined using gene expression, immunofluorescence, and in silico modeling approaches in the adult mouse brain following 9 Gy cranial RT. Three-dimensional volumetric quantification showed elevated molecular signatures of gliosis at short- and long-term post-RT times. We found significant elevations in complement C1q, C3, and TLR4 post-RT accompanied by increased colabeling of astrocytes and microglia. To address the mechanism of RT-induced complement cascade activation, neuroinflammation, and cognitive dysfunction, we used a genetic approach-conditional, microglia-selective C1q (Flox) knockdown mice-to determine whether a glia-specific, upstream complement cascade contributes to RICD. C1q-Flox mice exposed to cranial RT showed no cognitive deficits compared with irradiated WT mice. Further, irradiated C1q-Flox mice were protected from RT-induced microglial activation and synaptic loss, elevation of anaphylatoxin C5a receptor, astrocytic-C3, and microglial-TLR4 expression in the brain. Our findings demonstrate for the first time a microglia-specific mechanism of RICD involving an upstream complement cascade component, C1q. SIGNIFICANCE: Clinically-relevant radiotherapy induces aberrant complement activation, leading to brain injury. Microglia-selective genetic deletion of CNS complement C1q ameliorates radiation-induced cognitive impairments, synaptic loss, and neuroinflammation, highlighting the potential for C1q as a novel therapeutic target.See related commentary by Korimerla and Wahl, p. 1635.


Asunto(s)
Disfunción Cognitiva , Complemento C1q , Animales , Cognición , Disfunción Cognitiva/genética , Disfunción Cognitiva/prevención & control , Complemento C1q/genética , Ratones , Microglía , Neuroglía
4.
Front Cell Neurosci ; 15: 668286, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34262437

RESUMEN

Despite advancements in the radiotherapeutic management of brain malignancies, resultant sequelae include persistent cognitive dysfunction in the majority of survivors. Defining the precise causes of normal tissue toxicity has proven challenging, but the use of preclinical rodent models has suggested that reductions in neurogenesis and microvascular integrity, impaired synaptic plasticity, increased inflammation, and alterations in neuronal structure are contributory if not causal. As such, strategies to reverse these persistent radiotherapy-induced neurological disorders represent an unmet medical need. AM251, a cannabinoid receptor 1 reverse agonist known to facilitate adult neurogenesis and synaptic plasticity, may help to ameliorate radiation-induced CNS impairments. To test this hypothesis, three treatment paradigms were used to evaluate the efficacy of AM251 to ameliorate radiation-induced learning and memory deficits along with disruptions in mood at 4 and 12 weeks postirradiation. Results demonstrated that acute (four weekly injections) and chronic (16 weekly injections) AM251 treatments (1 mg/kg) effectively alleviated cognitive and mood dysfunction in cranially irradiated mice. The beneficial effects of AM251 were exemplified by improved hippocampal- and cortical-dependent memory function on the novel object recognition and object in place tasks, while similar benefits on mood were shown by reductions in depressive- and anxiety-like behaviors on the forced swim test and elevated plus maze. The foregoing neurocognitive benefits were associated with significant increases in newly born (doublecortin+) neurons (1.7-fold), hippocampal neurogenesis (BrdU+/NeuN+mature neurons, 2.5-fold), and reduced expression of the inflammatory mediator HMGB (1.2-fold) in the hippocampus of irradiated mice. Collectively, these findings indicate that AM251 ameliorates the effects of clinically relevant cranial irradiation where overall neurological benefits in memory and mood coincided with increased hippocampal cell proliferation, neurogenesis, and reduced expression of proinflammatory markers.

5.
Alzheimers Res Ther ; 13(1): 57, 2021 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-33676561

RESUMEN

BACKGROUND: Regenerative therapies to mitigate Alzheimer's disease (AD) neuropathology have shown very limited success. In the recent era, extracellular vesicles (EVs) derived from multipotent and pluripotent stem cells have shown considerable promise for the treatment of dementia and many neurodegenerative conditions. METHODS: Using the 5xFAD accelerated transgenic mouse model of AD, we now show the regenerative potential of human neural stem cell (hNSC)-derived EVs on the neurocognitive and neuropathologic hallmarks in the AD brain. Two- or 6-month-old 5xFAD mice received single or two intra-venous (retro-orbital vein, RO) injections of hNSC-derived EVs, respectively. RESULTS: RO treatment using hNSC-derived EVs restored fear extinction memory consolidation and reduced anxiety-related behaviors 4-6 weeks post-injection. EV treatment also significantly reduced dense core amyloid-beta plaque accumulation and microglial activation in both age groups. These results correlated with partial restoration of homeostatic levels of circulating pro-inflammatory cytokines in the AD mice. Importantly, EV treatment protected against synaptic loss in the AD brain that paralleled improved cognition. MiRNA analysis of the EV cargo revealed promising candidates targeting neuroinflammation and synaptic function. CONCLUSIONS: Collectively, these data demonstrate the neuroprotective effects of systemic administration of stem cell-derived EVs for remediation of behavioral and molecular AD neuropathologies.


Asunto(s)
Enfermedad de Alzheimer , Vesículas Extracelulares , Células-Madre Neurales , Enfermedad de Alzheimer/terapia , Animales , Modelos Animales de Enfermedad , Extinción Psicológica , Miedo , Humanos , Ratones , Ratones Transgénicos
6.
Artículo en Inglés | MEDLINE | ID: mdl-34277952

RESUMEN

AIM: Human stem cell-derived extracellular vesicles (EV) provide many advantages over cell-based therapies for the treatment of functionally compromised tissue beds and organ sites. Here we aimed to highlight multiple administration routes for the potential treatment of various forms of brain injury. METHODS: Human neural stem cell-derived EV were isolated from conditioned media and administered via three distinct routes: intrahippocampal transplantation, retro-orbital vein injection, and intranasal. EV were administered after which brains were evaluated to determine the capability of EV to translocate into normal tissue. RESULTS: Data showed no significant differences in the amount of EV able to translocate across the brain, indicating the functional equivalence of each administration route to effectively deliver EV to the brain parenchyma. CONCLUSION: Findings show that both systemic administration routes (retro-orbital vein or intranasal delivery) afforded effective penetrance and perfusion of EV throughout the brain in a minimally invasive manner, and point to a translationally tractable option for treating certain neurological disorders including those resulting from cranial irradiation procedures.

7.
Radiat Res ; 194(6): 636-645, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32853387

RESUMEN

Encephalic radiation therapy delivered at a conventional dose rate (CONV, 0.1-2.0 Gy/min) elicits a variety of temporally distinct damage signatures that invariably involve persistent indications of neuroinflammation. Past work has shown an involvement of both the innate and adaptive immune systems in modulating the central nervous system (CNS) radiation injury response, where elevations in astrogliosis, microgliosis and cytokine signaling define a complex pattern of normal tissue toxicities that never completely resolve. These side effects constitute a major limitation in the management of CNS malignancies in both adult and pediatric patients. The advent of a novel ultra-high dose-rate irradiation modality termed FLASH radiotherapy (FLASH-RT, instantaneous dose rates ≥106 Gy/s; 10 Gy delivered in 1-10 pulses of 1.8 µs) has been reported to minimize a range of normal tissue toxicities typically concurrent with CONV exposures, an effect that has been coined the "FLASH effect." Since the FLASH effect has now been found to significantly limit persistent inflammatory signatures in the brain, we sought to further elucidate whether changes in astrogliosis might account for the differential dose-rate response of the irradiated brain. Here we report that markers selected for activated astrogliosis and immune signaling in the brain (glial fibrillary acidic protein, GFAP; toll-like receptor 4, TLR4) are expressed at reduced levels after FLASH irradiation compared to CONV-irradiated animals. Interestingly, while FLASH-RT did not induce astrogliosis and TLR4, the expression level of complement C1q and C3 were found to be elevated in both FLASH and CONV irradiation modalities compared to the control. Although functional outcomes in the CNS remain to be cross-validated in response to the specific changes in protein expression reported, the data provide compelling evidence that distinguishes the dose-rate response of normal tissue injury in the irradiated brain.


Asunto(s)
Encéfalo/efectos de la radiación , Gliosis/prevención & control , Dosificación Radioterapéutica , Radioterapia/métodos , Algoritmos , Animales , Encéfalo/metabolismo , Encéfalo/patología , Activación de Complemento , Relación Dosis-Respuesta en la Radiación , Femenino , Ratones , Ratones Endogámicos C57BL , Traumatismos Experimentales por Radiación/prevención & control , Receptor Toll-Like 4/metabolismo
8.
Front Behav Neurosci ; 14: 535885, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33192361

RESUMEN

The radiation fields in space define tangible risks to the health of astronauts, and significant work in rodent models has clearly shown a variety of exposure paradigms to compromise central nervous system (CNS) functionality. Despite our current knowledge, sex differences regarding the risks of space radiation exposure on cognitive function remain poorly understood, which is potentially problematic given that 30% of astronauts are women. While work from us and others have demonstrated pronounced cognitive decrements in male mice exposed to charged particle irradiation, here we show that female mice exhibit significant resistance to adverse neurocognitive effects of space radiation. The present findings indicate that male mice exposed to low doses (≤30 cGy) of energetic (400 MeV/n) helium ions (4He) show significantly higher levels of neuroinflammation and more extensive cognitive deficits than females. Twelve weeks following 4He ion exposure, irradiated male mice demonstrated significant deficits in object and place recognition memory accompanied by activation of microglia, marked upregulation of hippocampal Toll-like receptor 4 (TLR4), and increased expression of the pro-inflammatory marker high mobility group box 1 protein (HMGB1). Additionally, we determined that exposure to 4He ions caused a significant decline in the number of dendritic branch points and total dendritic length along with the hippocampus neurons in female mice. Interestingly, only male mice showed a significant decline of dendritic spine density following irradiation. These data indicate that fundamental differences in inflammatory cascades between male and female mice may drive divergent CNS radiation responses that differentially impact the structural plasticity of neurons and neurocognitive outcomes following cosmic radiation exposure.

9.
Front Oncol ; 10: 602763, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33738245

RESUMEN

Human stem cell-derived extracellular vesicles (EV) provide many advantages over cell-based therapies for the treatment of functionally compromised tissue beds and organ sites. Here we sought to determine whether human embryonic stem cell (hESC)-derived EV could resolve in part, the adverse late normal tissue complications associated with exposure of the lung to ionizing radiation. The hESC-derived EV were systemically administered to the mice via the retro-orbital sinus to explore the potential therapeutic benefits following exposure to high thoracic doses of radiation (14 Gy). Data demonstrated that hESC-derived EV treatment significantly improved overall survival of the irradiated cohorts (P < 0.001). Increased survival was also associated with significant reductions in lung fibrosis as quantified by CBCT imaging (P < 0.01, 2 weeks post-irradiation). Qualitative histological analyses revealed reduced indications of radiation induced pulmonary injury in animals treated with EV. EV were then subjected to a rigorous proteomic analysis to ascertain the potential bioactive cargo that may prove beneficial in ameliorating radiation-induced normal tissue toxicities in the lung. Proteomics validated several consensus exosome markers (e.g., CD68) and identified major classes of proteins involved in nuclear pore complexes, epigenetics, cell cycle, growth and proliferation, DNA repair, antioxidant function, and cellular metabolism (TCA cycle and oxidative phosphorylation, OXYPHOS). Interestingly, EV were also found to contain mitochondrial components (mtDNA, OXYPHOS protein subunits), which may contribute to the metabolic reprograming and recovery of radiation-injured pulmonary tissue. To evaluate the safety of EV treatments in the context of the radiotherapeutic management of tumors, mice harboring TC1 tumor xenografts were subjected to the same EV treatments shown to forestall lung fibrosis. Data indicated that over the course of one month, no change in the growth of flank tumors between treated and control cohorts was observed. In conclusion, present findings demonstrate that systemic delivery of hESC-derived EV could ameliorate radiation-induced normal tissue complications in the lung, through a variety of potential mechanisms based on EV cargo analysis.

10.
Cancers (Basel) ; 12(6)2020 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-32599789

RESUMEN

Major advances in high precision treatment delivery and imaging have greatly improved the tolerance of radiotherapy (RT); however, the selective sparing of normal tissue and the reduction of neurocognitive side effects from radiation-induced toxicities remain significant problems for pediatric patients with brain tumors. While the overall survival of pediatric patients afflicted with medulloblastoma (MB), the most common type primary brain cancer in children, remains high (≥80%), lifelong neurotoxic side-effects are commonplace and adversely impact patients' quality of life. To circumvent these clinical complications, we have investigated the capability of ultra-high dose rate FLASH-radiotherapy (FLASH-RT) to protect the radiosensitive juvenile mouse brain from normal tissue toxicities. Compared to conventional dose rate (CONV) irradiation, FLASH-RT was found to ameliorate radiation-induced cognitive dysfunction in multiple independent behavioral paradigms, preserve developing and mature neurons, minimize microgliosis and limit the reduction of the plasmatic level of growth hormone. The protective "FLASH effect" was pronounced, especially since a similar whole brain dose of 8 Gy delivered with CONV-RT caused marked reductions in multiple indices of behavioral performance (objects in updated location, novel object recognition, fear extinction, light-dark box, social interaction), reductions in the number of immature (doublecortin+) and mature (NeuN+) neurons and increased neuroinflammation, adverse effects that were not found with FLASH-RT. Our data point to a potentially innovative treatment modality that is able to spare, if not prevent, many of the side effects associated with long-term treatment that disrupt the long-term cognitive and emotional well-being of medulloblastoma survivors.

11.
Stem Cells Transl Med ; 9(1): 93-105, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31568685

RESUMEN

Cranial radiotherapy, although beneficial for the treatment of brain tumors, inevitably leads to normal tissue damage that can induce unintended neurocognitive complications that are progressive and debilitating. Ionizing radiation exposure has also been shown to compromise the structural integrity of mature neurons throughout the brain, an effect believed to be at least in part responsible for the deterioration of cognitive health. Past work has shown that cranially transplanted human neural stem cells (hNSCs) or their extracellular vesicles (EVs) afforded long-term beneficial effects on many of these cognitive decrements. To provide additional insight into the potential neuroprotective mechanisms of cell-based regenerative strategies, we have analyzed hippocampal neurons for changes in structural integrity and synaptic remodeling after unilateral and bilateral transplantation of hNSCs or EVs derived from those same cells. Interestingly, hNSCs and EVs similarly afforded protection to host neurons, ameliorating the impact of irradiation on dendritic complexity and spine density for neurons present in both the ipsilateral and contralateral hippocampi 1 month following irradiation and transplantation. These morphometric improvements were accompanied by increased levels of glial cell-derived growth factor and significant attenuation of radiation-induced increases in postsynaptic density protein 95 and activated microglia were found ipsi- and contra-lateral to the transplantation sites of the irradiated hippocampus treated with hNSCs or hNSC-derived EVs. These findings document potent far-reaching neuroprotective effects mediated by grafted stem cells or EVs adjacent and distal to the site of transplantation and support their potential as therapeutic agents to counteract the adverse effects of cranial irradiation.


Asunto(s)
Irradiación Craneana/efectos adversos , Vesículas Extracelulares/trasplante , Células-Madre Neurales/trasplante , Animales , Irradiación Craneana/métodos , Humanos , Masculino , Ratas , Ratas Desnudas
12.
Mutagenesis ; 24(3): 211-24, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19153097

RESUMEN

Ionizing radiation is toxic to ovarian follicles and can cause infertility. Generation of reactive oxygen species (ROS) has been implicated in the toxicity of ionizing radiation in several cell types. We have shown that depletion of the antioxidant glutathione (GSH) sensitizes follicles and granulosa cells to toxicant-induced apoptosis and that supplementation of GSH is protective. The rate-limiting reaction in GSH biosynthesis is catalysed by glutamate-cysteine ligase (GCL), which consists of a catalytic subunit (GCLC) and a regulatory subunit (GCLM). We hypothesized that overexpression of Gclc or Gclm to increase GSH synthesis would protect granulosa cells against oxidant- and radiation-induced cell death. The COV434 line of human granulosa tumour cells was stably transfected with vectors designed for the constitutive expression of Gclc, Gclm, both Gclc and Gclm or empty vector. GCL protein and enzymatic activity and total GSH levels were significantly increased in the GCL subunit-transfected cells. GCL-transfected cells were resistant to cell killing by treatment with hydrogen peroxide compared to control cells. Cell viability declined less in all the GCL subunit-transfected cell lines 1-8 h after 0.5 mM hydrogen peroxide treatment than in control cells. We next examined the effects of GCL overexpression on responses to ionizing radiation. ROS were measured using a redox-sensitive fluorogenic dye in cells irradiated with 0, 1 or 5 Gy of gamma-rays. There was a dose-dependent increase in ROS within 30 min in all cell lines, an effect that was significantly attenuated in Gcl-transfected cells. Apoptosis, assessed by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labelling and activated caspase-3 immunoblotting, was significantly decreased in irradiated Gclc-transfected cells compared to irradiated control cells. Suppression of GSH synthesis in Gclc-transfected cells reversed resistance to radiation. These findings show that overexpression of GCL in granulosa cells can augment GSH synthesis and ameliorate various sequelae associated with exposure to oxidative stress and irradiation.


Asunto(s)
Muerte Celular/efectos de los fármacos , Muerte Celular/efectos de la radiación , Glutamato-Cisteína Ligasa/metabolismo , Glutatión/biosíntesis , Tumor de Células de la Granulosa/metabolismo , Dominio Catalítico/genética , Línea Celular Tumoral , Rayos gamma , Vectores Genéticos/genética , Humanos , Immunoblotting , Etiquetado Corte-Fin in Situ , Especies Reactivas de Oxígeno/metabolismo , Transfección
13.
Mutagenesis ; 24(2): 161-7, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19064695

RESUMEN

DNA strand breaks trigger marked phosphorylation of histone H2AX (i.e. gamma-H2AX). While DNA double-strand breaks (DSBs) provide a strong stimulus for this event, the accompanying structural alterations in chromatin may represent the actual signal that elicits gamma-H2AX. Our data show that changes in chromatin structure are sufficient to elicit extensive gamma-H2AX formation in the relative absence of DNA strand breaks. Cells subjected to hypotonic (0.05 M) treatment exhibit gamma-H2AX levels that are equivalent to those found after the induction of 80-200 DNA DSBs (i.e. 2-5 Gy). Despite this significant increase in phosphorylation, cell survival remains relatively unaffected (<10% cytotoxicity), and there is no significant increase in apoptosis. Nuclear staining profiles indicate that gamma-H2AX-positive cells induced under altered tonicity exhibit variable levels of staining, ranging from uniform pan staining to discrete punctate foci more characteristic of DNA strand breakage. The capability to induce significant gamma-H2AX formation under altered tonicity in the relative absence of DNA strand breaks suggests that this histone modification evolved in response to changes in chromatin structure.


Asunto(s)
Cromatina/metabolismo , Histonas/metabolismo , Animales , Ciclo Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cerebelo/citología , Citometría de Flujo , Humanos , Soluciones Hipotónicas/farmacología , Inmunohistoquímica , Ratones , Concentración Osmolar , Fosforilación/efectos de los fármacos , Células Madre/citología , Células Madre/efectos de los fármacos , Células Madre/metabolismo
14.
Acta Neuropathol Commun ; 7(1): 186, 2019 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-31753024

RESUMEN

Numerous clinical studies have established the debilitating neurocognitive side effects of chemotherapy in the treatment of breast cancer, often referred as chemobrain. We hypothesize that cognitive impairments are associated with elevated microglial inflammation in the brain. Thus, either elimination of microglia or restoration of microglial function could ameliorate cognitive dysfunction. Using a rodent model of chronic Adriamycin (ADR) treatment, a commonly used breast cancer chemotherapy, we evaluated two strategies to ameliorate chemobrain: 1) microglia depletion using the colony stimulating factor-1 receptor (CSF1R) inhibitor PLX5622 and 2) human induced pluripotent stem cell-derived microglia (iMG)-derived extracellular vesicle (EV) treatment. In strategy 1 mice received ADR once weekly for 4 weeks and were then administered CSF1R inhibitor (PLX5622) starting 72 h post-ADR treatment. ADR-treated animals given a normal diet exhibited significant behavioral deficits and increased microglial activation 4-6 weeks later. PLX5622-treated mice exhibited no ADR-related cognitive deficits and near complete depletion of IBA-1 and CD68+ microglia in the brain. Cytokine and RNA sequencing analysis for inflammation pathways validated these findings. In strategy 2, 1 week after the last ADR treatment, mice received retro-orbital vein injections of iMG-EV (once weekly for 4 weeks) and 1 week later, mice underwent behavior testing. ADR-treated mice receiving EV showed nearly complete restoration of cognitive function and significant reductions in microglial activation as compared to untreated ADR mice. Our data demonstrate that ADR treatment elevates CNS inflammation that is linked to cognitive dysfunction and that attenuation of neuroinflammation reverses the adverse neurocognitive effects of chemotherapy.


Asunto(s)
Antibióticos Antineoplásicos/toxicidad , Disfunción Cognitiva/metabolismo , Doxorrubicina/toxicidad , Células Madre Pluripotentes Inducidas/trasplante , Mediadores de Inflamación/metabolismo , Compuestos Orgánicos/uso terapéutico , Animales , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/terapia , Humanos , Inflamación/inducido químicamente , Inflamación/metabolismo , Inflamación/terapia , Mediadores de Inflamación/antagonistas & inhibidores , Masculino , Ratones , Ratones Endogámicos C57BL , Compuestos Orgánicos/farmacología , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/antagonistas & inhibidores , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo
15.
J Comp Neurol ; 526(17): 2845-2855, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30198564

RESUMEN

High-energy charged particles are considered particularly hazardous components of the space radiation environment. Such particles include fully ionized energetic nuclei of helium, silicon, and oxygen, among others. Exposure to charged particles causes reactive oxygen species production, which has been shown to result in neuronal dysfunction and myelin degeneration. Here we demonstrate that mice exposed to high-energy charged particles exhibited alterations in dendritic spine density in the hippocampus, with a significant decrease of thin spines in mice exposed to helium, oxygen, and silicon, compared to sham-irradiated controls. Electron microscopy confirmed these findings and revealed a significant decrease in overall synapse density and in nonperforated synapse density, with helium and silicon exhibiting more detrimental effects than oxygen. Degeneration of myelin was also evident in exposed mice with significant changes in the percentage of myelinated axons and g-ratios. Our data demonstrate that exposure to all types of high-energy charged particles have a detrimental effect, with helium and silicon having more synaptotoxic effects than oxygen. These results have important implications for the integrity of the central nervous system and the cognitive health of astronauts after prolonged periods of space exploration.


Asunto(s)
Partículas Elementales , Vaina de Mielina/efectos de la radiación , Sinapsis/efectos de la radiación , Animales , Axones/efectos de la radiación , Axones/ultraestructura , Espinas Dendríticas/efectos de la radiación , Conducta Exploratoria/efectos de la radiación , Helio , Hipocampo/citología , Hipocampo/efectos de la radiación , Masculino , Ratones , Ratones Endogámicos C57BL , Vaina de Mielina/ultraestructura , Oxígeno , Silicio , Sinapsis/ultraestructura
16.
Radiat Res ; 189(4): 345-353, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29351056

RESUMEN

Clinical management of primary and secondary central nervous system (CNS) malignancies frequently includes radiotherapy to forestall tumor growth and recurrence after surgical resection. While cranial radiotherapy remains beneficial, adult and pediatric brain tumor survivors suffer from a wide range of debilitating and progressive cognitive deficits. Although this has been recognized as a significant problem for decades, there remains no clinical recourse for the unintended neurocognitive sequelae associated with these types of cancer treatments. In previous work, multiple mechanisms have been identified that contribute to radiation-induced cognitive dysfunction, including the inhibition of neurogenesis caused by the depletion of radiosensitive populations of stem and progenitor cells in the hippocampus. To explore the potential neuroprotective properties of a pro-neurogenic compound NSI-189, Long-Evans rats were subjected to a clinically relevant fractionated irradiation protocol followed by four weeks of NSI-189 administered daily by oral gavage. Animals were then subjected to five different behavioral tasks followed by an analysis of neurogenesis, hippocampal volume and neuroinflammation. Irradiated cohorts manifested significant behavioral decrements on all four spontaneous exploration tasks. Importantly, NSI-189 treatment resulted in significantly improved performance in four of these tasks: novel place recognition, novel object recognition, object in place and temporal order. In addition, there was a trend of improved performance in the contextual phase of the fear conditioning task. Importantly, enhanced cognition in the NSI-189-treated cohort was found to persist one month after the cessation of drug treatment. These neurocognitive benefits of NSI-189 coincided with a significant increase in neurogenesis and a significant decrease in the numbers of activated microglia compared to the irradiated cohort that was given vehicle alone. The foregoing changes were not accompanied by major changes in hippocampal volume. These data demonstrate that oral administration of a pro-neurogenic compound exhibiting anti-inflammatory indications could impart long-term neurocognitive benefits in the irradiated brain.


Asunto(s)
Aminopiridinas/administración & dosificación , Aminopiridinas/farmacología , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/etiología , Piperazinas/administración & dosificación , Piperazinas/farmacología , Traumatismos Experimentales por Radiación/tratamiento farmacológico , Traumatismos Experimentales por Radiación/etiología , Administración Oral , Animales , Cognición/efectos de los fármacos , Cognición/efectos de la radiación , Disfunción Cognitiva/patología , Disfunción Cognitiva/fisiopatología , Condicionamiento Psicológico/efectos de los fármacos , Condicionamiento Psicológico/efectos de la radiación , Irradiación Craneana/efectos adversos , Miedo/psicología , Hipocampo/efectos de los fármacos , Hipocampo/patología , Hipocampo/fisiopatología , Hipocampo/efectos de la radiación , Fármacos Neuroprotectores/administración & dosificación , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Tamaño de los Órganos/efectos de los fármacos , Tamaño de los Órganos/efectos de la radiación , Traumatismos Experimentales por Radiación/patología , Traumatismos Experimentales por Radiación/fisiopatología , Ratas , Reconocimiento en Psicología/efectos de los fármacos , Reconocimiento en Psicología/efectos de la radiación
17.
Sci Rep ; 7: 42885, 2017 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-28220892

RESUMEN

Among the dangers to astronauts engaging in deep space missions such as a Mars expedition is exposure to radiations that put them at risk for severe cognitive dysfunction. These radiation-induced cognitive impairments are accompanied by functional and structural changes including oxidative stress, neuroinflammation, and degradation of neuronal architecture. The molecular mechanisms that dictate CNS function are multifaceted and it is unclear how irradiation induces persistent alterations in the brain. Among those determinants of cognitive function are neuroepigenetic mechanisms that translate radiation responses into altered gene expression and cellular phenotype. In this study, we have demonstrated a correlation between epigenetic aberrations and adverse effects of space relevant irradiation on cognition. In cognitively impaired irradiated mice we observed increased 5-methylcytosine and 5-hydroxymethylcytosine levels in the hippocampus that coincided with increased levels of the DNA methylating enzymes DNMT3a, TET1 and TET3. By inhibiting methylation using 5-iodotubercidin, we demonstrated amelioration of the epigenetic effects of irradiation. In addition to protecting against those molecular effects of irradiation, 5-iodotubercidin restored behavioral performance to that of unirradiated animals. The findings of this study establish the possibility that neuroepigenetic mechanisms significantly contribute to the functional and structural changes that affect the irradiated brain and cognition.


Asunto(s)
Encéfalo/efectos de la radiación , Epigenómica , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Adenosina Quinasa/antagonistas & inhibidores , Adenosina Quinasa/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Conducta Animal/efectos de la radiación , Encéfalo/metabolismo , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN/efectos de los fármacos , Metilación de ADN/efectos de la radiación , ADN Metiltransferasa 3A , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Dioxigenasas , Hipocampo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Tubercidina/análogos & derivados , Tubercidina/farmacología , Irradiación Corporal Total
18.
Oncotarget ; 8(46): 80853-80868, 2017 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-29113349

RESUMEN

EGFR amplification in cells having double minute chromosomes (DM) is commonly found in glioblastoma multiforme (GBM); however, how much it contributes to the current failure to treat GBM successfully is unknown. We studied two syngeneic primary cultures derived from a GBM with and without cells carrying DM, for their differential molecular and metabolic profiles, in vivo growth patterns, and responses to irradiation (IR). Each cell line has a distinct molecular profile consistent with an invasive "go" (with DM) or angiogenic "grow" phenotype (without DM) demonstrated in vitro and in intracranial xenograft models. Cells with DM were relatively radio-resistant and used higher glycolytic respiration and lower oxidative phosphorylation in comparison to cells without them. The DM-containing cell was able to restore tumor heterogeneity by mis-segregation of the DM-chromosomes, giving rise to cell subpopulations without them. As a response to IR, DM-containing cells switched their respiration from glycolic metabolism to oxidative phosphorylation and shifted molecular profiles towards that of cells without DM. Irradiated cells with DM showed the capacity to alter their extracellular microenvironment to not only promote invasiveness of the surrounding cells, regardless of DM status, but also to create a pro-angiogenic tumor microenvironment. IR of cells without DM was found primarily to increase extracellular MMP2 activity. Overall, our data suggest that the DM-containing cells of GBM are responsible for tumor recurrence due to their high invasiveness and radio-resistance and the mis-segregation of their DM chromosomes, to give rise to fast-growing cells lacking DM chromosomes.

19.
Int J Radiat Biol ; 82(9): 640-7, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17050476

RESUMEN

PURPOSE: To determine whether changes in oxidative stress could enhance the sensitivity of neural precursor cells to ionizing radiation. MATERIALS AND METHODS: Two strategies were used whereby oxidative stress was modulated endogenously, through manipulation cell culture density, or exogenously, through direct addition of hydrogen peroxide. RESULTS: Cells subjected to increased endogenous oxidative stress through low-density growth routinely exhibited an inhibition of growth following irradiation. However, cells subjected to chronic exogenous oxidative treatments showed increased sensitivity to proton and gamma-irradiation compared to untreated controls. Reduced survival of irradiated cultures subjected to oxidizing conditions was corroborated using enzymatic viability assays, and was observed over a range of doses (1 - 5 Gy) and post-irradiation re-seeding densities (20 - 200 K/plate). CONCLUSIONS: Collectively our results provide further support for the importance of redox state in the regulation of neural precursor cell function, and suggest that oxidative stress can inhibit the proliferative potential of cells through different mechanisms. This is likely to compromise survival and under conditions where excess exogenous oxidants might predominate, sensitivity to irradiation may be enhanced.


Asunto(s)
Células Madre Multipotentes/fisiología , Células Madre Multipotentes/efectos de la radiación , Neuronas/fisiología , Neuronas/efectos de la radiación , Estrés Oxidativo/fisiología , Adaptación Fisiológica/fisiología , Adaptación Fisiológica/efectos de la radiación , Animales , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta en la Radiación , Células Madre Multipotentes/citología , Neuronas/citología , Estrés Oxidativo/efectos de los fármacos , Dosis de Radiación , Tolerancia a Radiación/fisiología , Ratas
20.
Cancer Res ; 63(12): 3107-11, 2003 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-12810636

RESUMEN

Past work using the human-hamster hybrid line GM10115 has demonstrated that exposure to a variety of DNA damaging agents can lead to the persistent destabilization of chromosomes. To gain insight into the potential biochemical mechanisms involved in perpetuating the unstable phenotype, groups of clones characterized as stable or unstable were analyzed for indications of oxidative stress. All of the clones were derived from single progenitor cells surviving exposure to ionizing radiation or chemicals. Compared with their stable counterparts, unstable clones possessed elevated levels of reactive oxygen species (ROS) as measured by their enhanced ability to oxidize fluorogenic dyes. Fluorescence automated cell sorting analysis indicated that unstable clones had significantly higher mean fluorescence signals of approximately 2-fold and approximately 1.25-fold, respectively, as derived from the dyes 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate and dihydrorhodamine 123, respectively. To determine whether mitochondria might constitute a potential source of ROS, stable and unstable clones of cells were analyzed for mitochondrial content using nonyl acridine orange and function using rhodamine 123. Fluorescence automated cell sorting data indicated that compared with stable clones, unstable clones possessed an elevated number (15% increase in mean nonyl acridine orange fluorescence) of dysfunctional mitochondria (27% decrease in mean rhodamine 123 fluorescence). Interestingly, the consequences of elevated ROS did not translate to an increase in oxidative base damage in nuclear DNA. Analysis of nine different base damage adducts by gas chromatography/mass spectrometry did not reveal significant differences between stable and unstable clones. The data suggest that the perpetuation of many of the abnormal phenotypes associated with genomic instability may be linked to a state of chronic oxidative stress derived in part from dysfunctional mitochondria.


Asunto(s)
Aneuploidia , Células Híbridas/metabolismo , Mitocondrias/metabolismo , Estrés Oxidativo , Animales , Bleomicina/farmacología , Cationes , Cromosomas/efectos de los fármacos , Cromosomas/efectos de la radiación , Células Clonales/citología , Células Clonales/efectos de los fármacos , Células Clonales/metabolismo , Células Clonales/efectos de la radiación , Cricetinae , Daño del ADN , Relación Dosis-Respuesta en la Radiación , Colorantes Fluorescentes/metabolismo , Humanos , Células Híbridas/citología , Células Híbridas/efectos de los fármacos , Células Híbridas/efectos de la radiación , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA