Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(1)2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36613483

RESUMEN

Arterial stiffness is a major vascular complication of chronic kidney disease (CKD). The development of renal damage, hypertension, and increased pulse wave velocity (PWV) in CKD might be associated with an imbalance in bone morphogenetic proteins (BMP)-2 and BMP-7. Plasma BMP-2 and BMP-7 were determined by ELISA in CKD patients (stages I-III; n = 95) and Munich Wistar Frömter (MWF) rats. Age-matched Wistar rats were used as a control. The expression of BMP-2, BMP-7, and profibrotic and calcification factors was determined in kidney and perivascular adipose tissues (PVAT). BMP-2 was higher in stage III CKD patients compared to control subjects. BMP-7 was lower at any CKD stage compared to controls, with a significant further reduction in stage III patients. A similar imbalance was observed in MWF rats together with the increase in systolic (SBP) and diastolic blood pressure (DBP), or pulse wave velocity (PWV). MWF exhibited elevated urinary albumin excretion (UAE) and renal expression of BMP-2 or kidney damage markers, Kim-1 and Ngal, whereas renal BMP-7 was significantly lower than in Wistar rats. SBP, DBP, PWV, UAE, and plasma creatinine positively correlated with the plasma BMP-2/BMP-7 ratio. Periaortic and mesenteric PVAT from MWF rats showed an increased expression of BMP-2 and profibrotic and calcification markers compared to Wistar rats, together with a reduced BMP-7 expression. BMP-2 and BMP-7 imbalance in plasma, kidney, and PVATs is associated with vascular damage, suggesting a profibrotic/pro-calcifying propensity associated with progressive CKD. Thus, their combined analysis stratified by CKD stages might be of clinical interest to provide information about the degree of renal and vascular damage in CKD.


Asunto(s)
Insuficiencia Renal Crónica , Rigidez Vascular , Animales , Ratas , Proteína Morfogenética Ósea 7 , Riñón , Análisis de la Onda del Pulso , Ratas Wistar , Insuficiencia Renal Crónica/complicaciones
2.
Clin Sci (Lond) ; 135(9): 1145-1163, 2021 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-33899912

RESUMEN

Compound 21 (C21), a selective agonist of angiotensin II type 2 receptor (AT2R), induces vasodilation through NO release. Since AT2R seems to be overexpressed in obesity, we hypothesize that C21 prevents the development of obesity-related vascular alterations. The main goal of the present study was to assess the effect of C21 on thoracic aorta endothelial function in a model of diet-induced obesity (DIO) and to elucidate the potential cross-talk among AT2R, Mas receptor (MasR) and/or bradykinin type 2 receptor (B2R) in this response. Five-week-old male C57BL6J mice were fed a standard (CHOW) or a high-fat diet (HF) for 6 weeks and treated daily with C21 (1 mg/kg p.o) or vehicle, generating four groups: CHOW-C, CHOW-C21, HF-C, HF-C21. Vascular reactivity experiments were performed in thoracic aorta rings. Human endothelial cells (HECs; EA.hy926) were used to elucidate the signaling pathways, both at receptor and intracellular levels. Arteries from HF mice exhibited increased contractions to Ang II than CHOW mice, effect that was prevented by C21. PD123177, A779 and HOE-140 (AT2R, Mas and B2R antagonists) significantly enhanced Ang II-induced contractions in CHOW but not in HF-C rings, suggesting a lack of functionality of those receptors in obesity. C21 prevented those alterations and favored the formation of AT2R/MasR and MasR/B2R heterodimers. HF mice also exhibited impaired relaxations to acetylcholine (ACh) due to a reduced NO availability. C21 preserved NO release through PKA/p-eNOS and AKT/p-eNOS signaling pathways. In conclusion, C21 favors the interaction among AT2R, MasR and B2R and prevents the development of obesity-induced endothelial dysfunction by stimulating NO release through PKA/p-eNOS and AKT/p-eNOS signaling pathways.


Asunto(s)
Endotelio Vascular/efectos de los fármacos , Imidazoles/uso terapéutico , Proteínas Proto-Oncogénicas/metabolismo , Receptor de Angiotensina Tipo 2/agonistas , Receptor de Bradiquinina B2/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Sulfonamidas/uso terapéutico , Tiofenos/uso terapéutico , Enfermedades Vasculares/prevención & control , Animales , Aorta Torácica/efectos de los fármacos , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Dieta Alta en Grasa , Evaluación Preclínica de Medicamentos , Células Endoteliales de la Vena Umbilical Humana , Humanos , Imidazoles/farmacología , Masculino , Ratones Endogámicos C57BL , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Obesidad/complicaciones , Obesidad/metabolismo , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor Cross-Talk , Receptor de Angiotensina Tipo 2/metabolismo , Sistema Renina-Angiotensina/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Sulfonamidas/farmacología , Tiofenos/farmacología , Enfermedades Vasculares/etiología , Enfermedades Vasculares/metabolismo
3.
Clin Sci (Lond) ; 135(24): 2763-2780, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34854902

RESUMEN

The aim of the present study was to evaluate the effect of Compound 21 (C21), a selective AT2R agonist, on the prevention of endothelial dysfunction, extracellular matrix (ECM) remodeling and arterial stiffness associated with diet-induced obesity (DIO). Five-week-old male C57BL/6J mice were fed a standard (Chow) or high-fat diet (HF) for 6 weeks. Half of the animals of each group were simultaneously treated with C21 (1 mg/kg/day, in the drinking water), generating four groups: Chow C, Chow C21, HF C, and HF C21. Vascular function and mechanical properties were determined in the abdominal aorta. To evaluate ECM remodeling, collagen deposition and TGF-ß1 concentrations were determined in the abdominal aorta and the activity of metalloproteinases (MMP) 2 and 9 was analyzed in the plasma. Abdominal aortas from HF C mice showed endothelial dysfunction as well as enhanced contractile but reduced relaxant responses to Ang II. This effect was abrogated with C21 treatment by preserving NO availability. A left-shift in the tension-stretch relationship, paralleled by an augmented ß-index (marker of intrinsic arterial stiffness), and enhanced collagen deposition and MMP-2/-9 activities were also detected in HF mice. However, when treated with C21, HF mice exhibited lower TGF-ß1 levels in abdominal aortas together with reduced MMP activities and collagen deposition compared with HF C mice. In conclusion, these data demonstrate that AT2R stimulation by C21 in obesity preserves NO availability and prevents unhealthy vascular remodeling, thus protecting the abdominal aorta in HF mice against the development of endothelial dysfunction, ECM remodeling and arterial stiffness.


Asunto(s)
Aorta Abdominal/efectos de los fármacos , Dieta Alta en Grasa/efectos adversos , Imidazoles/farmacología , Sulfonamidas/farmacología , Tiofenos/farmacología , Rigidez Vascular/efectos de los fármacos , Animales , Antiinflamatorios/farmacología , Colágeno/metabolismo , Masculino , Metaloproteinasa 2 de la Matriz/sangre , Metaloproteinasa 9 de la Matriz/sangre , Ratones Endogámicos C57BL , Obesidad/metabolismo , Receptor de Angiotensina Tipo 2/agonistas , Factor de Crecimiento Transformador beta1/sangre
4.
Am J Nephrol ; 51(4): 294-303, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32088716

RESUMEN

BACKGROUND: Development of albuminuria and arterial stiffness in Munich Wistar Frömter (MWF) rats, a model of chronic kidney disease, is related to alterations in extracellular matrix, increased oxidative stress, and endothelial dysfunction. Finerenone (FIN), a novel, nonsteroidal, potent, and selective mineralocorticoid receptor antagonist, improves endothelial dysfunction through enhancing nitric oxide (NO) bioavailability and decreasing superoxide anion levels due to an upregulation in vascular and renal superoxide dismutase activity. We hypothesize that FIN reduces arterial stiffness in this model associated to the reduction in albuminuria and matrix metalloproteinase (MMP)-2/9 activity. METHODS: Twelve-week-old MWF rats with established albuminuria and age-matched normoalbuminuric Wistar (W) rats were treated with FIN (10 mg/kg/day, once-daily oral gavage) or with vehicle (control, C) for 4 weeks. RESULTS: Arterial stiffness was significantly higher in mesenteric arteries (MA) of MWF-C as compared to W-C. FIN treatment significantly lowered ß-index, a measure of intrinsic stiffness independent of geometry, in MWF (ßMWF-FIN = 7.7 ± 0.4 vs. ßMWF-C = 9.2 ± 0.5, p < 0.05) positively correlating with urinary albumin excretion. Elastin fenestrae area in the internal elastic lamina of MA from MWF-FIN was significantly larger (+377%, p < 0.05). FIN increased plasma pro-MMP-2 and decreased plasma MMP-2 and MMP-9 activities, correlating with reductions in ß-index. MA from MWF-FIN exhibited higher NO bioavailability and reduced superoxide anion levels compared to MWF-C. CONCLUSION: FIN treatment reduces intrinsic arterial stiffness in MA from MWF rats associated with changes in elastin organization, normalization of MMP-2 and MMP-9 activities, and reduction of oxidative stress. Moreover, reduction of arterial stiffness correlates with reduction in albuminuria.


Asunto(s)
Albuminuria/tratamiento farmacológico , Enfermedades Cardiovasculares/prevención & control , Antagonistas de Receptores de Mineralocorticoides/administración & dosificación , Naftiridinas/administración & dosificación , Insuficiencia Renal Crónica/complicaciones , Rigidez Vascular/efectos de los fármacos , Animales , Enfermedades Cardiovasculares/etiología , Modelos Animales de Enfermedad , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/patología , Humanos , Riñón/irrigación sanguínea , Riñón/efectos de los fármacos , Masculino , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Arterias Mesentéricas/patología , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Wistar , Insuficiencia Renal Crónica/orina , Transducción de Señal/efectos de los fármacos
5.
Int J Mol Sci ; 22(1)2020 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-33379399

RESUMEN

Fetal undernutrition programs cardiometabolic diseases, with higher susceptibility in males. The mechanisms implicated are not fully understood and may be related to sex differences in placental adaptation. To evaluate this hypothesis, we investigated placental oxidative balance, vascularization, glucocorticoid barrier, and fetal growth in rats exposed to 50% global nutrient restriction from gestation day 11 (MUN, n = 8) and controls (n = 8). At gestation day 20 (G20), we analyzed maternal, placental, and fetal weights; oxidative damage, antioxidants, corticosterone, and PlGF (placental growth factor, spectrophotometry); and VEGF (vascular endothelial growth factor), 11ß-HSD2, p22phox, XO, SOD1, SOD2, SOD3, catalase, and UCP2 expression (Western blot). Compared with controls, MUN dams exhibited lower weight and plasma proteins and higher corticosterone and catalase without oxidative damage. Control male fetuses were larger than female fetuses. MUN males had higher plasma corticosterone and were smaller than control males, but had similar weight than MUN females. MUN male placenta showed higher XO and lower 11ß-HSD2, VEGF, SOD2, catalase, UCP2, and feto-placental ratio than controls. MUN females had similar feto-placental ratio and plasma corticosterone than controls. Female placenta expressed lower XO, 11ß-HSD2, and SOD3; similar VEGF, SOD1, SOD2, and UCP2; and higher catalase than controls, being 11ß-HSD2 and VEGF higher compared to MUN males. Male placenta has worse adaptation to undernutrition with lower efficiency, associated with oxidative disbalance and reduced vascularization and glucocorticoid barrier. Glucocorticoids and low nutrients may both contribute to programming in MUN males.


Asunto(s)
Desarrollo Fetal , Feto/metabolismo , Desnutrición/complicaciones , Fenómenos Fisiologicos Nutricionales Maternos , Factor de Crecimiento Placentario/metabolismo , Placenta/metabolismo , Caracteres Sexuales , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Peso Corporal , Femenino , Peroxidación de Lípido , Masculino , Desnutrición/sangre , Oxidación-Reducción , Embarazo , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo
6.
Stem Cells ; 31(7): 1309-20, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23533182

RESUMEN

Adipose tissue (AT) has become accepted as a source of multipotent progenitor cells, the adipose stromal cells (ASCs). In this regard, considerable work has been performed to harvest and characterize this cell population as well as to investigate the mechanisms by which transplanted ASCs mediate tissue regeneration. In contrast the endogenous release of native ASCs by AT has been poorly investigated. In this work, we show that native ASCs egress from murine AT. Indeed, we demonstrated that the release of native ASCs from AT can be evidenced both using an ex vivo perfusion model that we set up and in vivo. Such a mobilization process is controlled by CXCR4 chemokine receptor. In addition, once mobilized from AT, circulating ASCs were found to navigate through lymph fluid and to home into lymph nodes (LN). Therefore, we demonstrated that, during the LN activation, the fat depot encapsulating the activated LN releases native ASCs, which in turn invade the activated LN. Moreover, the ASCs invading the LN were visualized in close physical interaction with podoplanin and ER-TR7 positive structures corresponding to the stromal network composing the LN. This dynamic was impaired with CXCR4 neutralizing antibody. Taken together, these data provide robust evidences that native ASCs can traffic in vivo and that AT might provide stromal cells to activated LNs.


Asunto(s)
Tejido Adiposo/citología , Ganglios Linfáticos/citología , Células Madre Mesenquimatosas/citología , Tejido Adiposo/metabolismo , Animales , Diferenciación Celular/fisiología , Procesos de Crecimiento Celular/fisiología , Quimiocina CXCL12/metabolismo , Inmunofenotipificación , Ganglios Linfáticos/metabolismo , Masculino , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos C57BL , Receptores CXCR4/metabolismo
7.
Acta Physiol (Oxf) ; 239(3): e14023, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37553856

RESUMEN

AIM: In addition to functioning as an energy sensor switch, AMPK plays a key role in the maintenance of cardiovascular homeostasis. However, obesity disrupts AMPK signaling, contributing to endothelial dysfunction and cardiovascular disease. This study aimed to elucidate if a short-term dietary intervention consisting in replacing the high-fat diet with a standard diet for 2 weeks could reverse obesity-induced endothelial dysfunction via AMPK-CREB activation. METHODS: For this, 5-week-old male C57BL6J mice were fed a standard (Chow) or a high-fat (HF) diet for 8 weeks. The HF diet was replaced by the chow diet for the last 2 weeks in half of HF mice, generating 3 groups: Chow, HF and HF-Chow. Vascular reactivity and western-blot assays were performed in the thoracic aorta. RESULTS: Returning to a chow diet significantly reduced body weight and glucose intolerance. Relaxant responses to acetylcholine and the AMPK activator (AICAR) were significantly impaired in HF mice but improved in HF-Chow mice. The protein levels of AMPKα, p-CREB and antioxidant systems (heme oxygenase-1 (HO-1) and catalase) were significantly reduced in HF but normalized in HF-Chow mice. CONCLUSION: Improving dietary intake by replacing a HF diet with a standard diet improves AMPK-mediated responses due to the upregulation of the AMPK/CREB/HO-1 signaling pathway.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Enfermedades Vasculares , Ratones , Masculino , Animales , Proteínas Quinasas Activadas por AMP/metabolismo , Regulación hacia Arriba , Obesidad/metabolismo , Transducción de Señal , Dieta Alta en Grasa/efectos adversos , Ratones Endogámicos C57BL
8.
Biofactors ; 49(6): 1106-1120, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37286331

RESUMEN

The angiotensin II type 2 receptor (AT2R) exerts vasorelaxant, anti-inflammatory, and antioxidant properties. In obesity, its activation counterbalances the adverse cardiovascular effects of angiotensin II mediated by the AT1R. Preliminary results indicate that it also promotes brown adipocyte differentiation in vitro. Our hypothesis is that AT2R activation could increase BAT mass and activity in obesity. Five-week-old male C57BL/6J mice were fed a standard or a high-fat (HF) diet for 6 weeks. Half of the animals were treated with compound 21 (C21), a selective AT2R agonist, (1 mg/kg/day) in the drinking water. Electron transport chain (ETC), oxidative phosphorylation, and UCP1 proteins were measured in the interscapular BAT (iBAT) and thoracic perivascular adipose tissue (tPVAT) as well as inflammatory and oxidative parameters. Differentiation and oxygen consumption rate (OCR) in the presence of C21 was tested in brown preadipocytes. In vitro, C21-differentiated brown adipocytes showed an AT2R-dependent increase of differentiation markers (Ucp1, Cidea, Pparg) and increased basal and H+ leak-linked OCR. In vivo, HF-C21 mice showed increased iBAT mass compared to HF animals. Both their iBAT and tPVAT showed higher protein levels of the ETC protein complexes and UCP1, together with a reduction of inflammatory and oxidative markers. The activation of the AT2R increases BAT mass, mitochondrial activity, and reduces markers of tissue inflammation and oxidative stress in obesity. Therefore, insulin reduction and better vascular responses are achieved. Thus, the activation of the protective arm of the renin-angiotensin system arises as a promising tool in the treatment of obesity.


Asunto(s)
Tejido Adiposo Pardo , Receptor de Angiotensina Tipo 2 , Animales , Masculino , Ratones , Adipocitos Marrones , Ratones Endogámicos C57BL , Obesidad/tratamiento farmacológico , Obesidad/genética , Obesidad/metabolismo , Receptor de Angiotensina Tipo 2/genética , Receptor de Angiotensina Tipo 2/agonistas , Receptor de Angiotensina Tipo 2/metabolismo , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
9.
Nat Commun ; 14(1): 80, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36604419

RESUMEN

Fibro-adipogenic progenitors (FAPs) play a crucial role in skeletal muscle regeneration, as they generate a favorable niche that allows satellite cells to perform efficient muscle regeneration. After muscle injury, FAP content increases rapidly within the injured muscle, the origin of which has been attributed to their proliferation within the muscle itself. However, recent single-cell RNAseq approaches have revealed phenotype and functional heterogeneity in FAPs, raising the question of how this differentiation of regenerative subtypes occurs. Here we report that FAP-like cells residing in subcutaneous adipose tissue (ScAT), the adipose stromal cells (ASCs), are rapidly released from ScAT in response to muscle injury. Additionally, we find that released ASCs infiltrate the damaged muscle, via a platelet-dependent mechanism and thus contribute to the FAP heterogeneity. Moreover, we show that either blocking ASCs infiltration or removing ASCs tissue source impair muscle regeneration. Collectively, our data reveal that ScAT is an unsuspected physiological reservoir of regenerative cells that support skeletal muscle regeneration, underlining a beneficial relationship between muscle and fat.


Asunto(s)
Músculo Esquelético , Enfermedades Musculares , Humanos , Tejido Adiposo , Diferenciación Celular/genética , Adipogénesis/genética
10.
Sci Rep ; 12(1): 4225, 2022 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-35273216

RESUMEN

Endothelial adenosine monophosphate-activated protein kinase (AMPK) plays a critical role in the regulation of vascular tone through stimulating nitric oxide (NO) release in endothelial cells. Since obesity leads to endothelial dysfunction and AMPK dysregulation, AMPK activation might be an important strategy to restore vascular function in cardiometabolic alterations. Here, we report the identification of a novel AMPK modulator, the indolic derivative IND6, which shows affinity for AMPKα1ß1γ1, the primary AMPK isoform in human EA.Hy926 endothelial cells. IND6 shows inhibitory action of the enzymatic activity in vitro, but increases the levels of p-Thr174AMPK, p-Ser1177eNOS and p-Ser79ACC in EA.Hy926. This paradoxical finding might be explained by the ability of IND6 to act as a mixed-type inhibitor, but also to promote the enzyme activation by adopting two distinct binding modes at the ADaM site. Moreover, functional assays reveal that IND6 increased the eNOS-dependent production of NO and elicited a concentration-dependent vasodilation of endothelium-intact rat aorta due to AMPK and eNOS activation, demonstrating a functional activation of the AMPK-eNOS-NO endothelial pathway. This kinase inhibition profile, combined with the paradoxical AMPK activation in cells and arteries, suggests that these new chemical entities may constitute a valuable starting point for the development of new AMPK modulators with therapeutic potential for the treatment of vascular complications associated with obesity.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Vasodilatación , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Humanos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Obesidad/metabolismo , Fosforilación , Ratas , Transducción de Señal , Vasodilatación/efectos de los fármacos
11.
Nutrients ; 13(3)2021 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-33808927

RESUMEN

Vegetable oils such as palm oil (enriched in saturated fatty acids, SFA) and high-oleic-acid sunflower oil (HOSO, containing mainly monounsaturated fatty acids, MUFA) have emerged as the most common replacements for trans-fats in the food industry. The aim of this study is to analyze the impact of SFA and MUFA-enriched high-fat (HF) diets on endothelial function, vascular remodeling, and arterial stiffness compared to commercial HF diets. Five-week-old male C57BL6J mice were fed a standard (SD), a HF diet enriched with SFA (saturated oil-enriched Food, SOLF), a HF diet enriched with MUFA (unsaturated oil-enriched Food, UOLF), or a commercial HF diet for 8 weeks. Vascular function was analyzed in the thoracic aorta. Structural and mechanical parameters were assessed in mesenteric arteries by pressure myography. SOLF, UOLF, and HF diet reduced contractile responses to phenylephrine and induced endothelial dysfunction in the thoracic aorta. A significant increase in the ß-index, and thus in arterial stiffness, was also detected in mesenteric arteries from the three HF groups, due to enhanced deposition of collagen in the vascular wall. SOLF also induced hypotrophic inward remodeling. In conclusion, these data demonstrate a deleterious effect of HF feeding on obesity-related vascular alterations that is exacerbated by SFA.


Asunto(s)
Arterias/efectos de los fármacos , Grasas de la Dieta/farmacología , Ácidos Grasos Monoinsaturados/farmacología , Rigidez Vascular/efectos de los fármacos , Animales , Aorta Torácica/efectos de los fármacos , Arterias/fisiología , Peso Corporal , Colágeno/metabolismo , Dieta Alta en Grasa , Grasas Insaturadas en la Dieta/farmacología , Elastina , Ácidos Grasos/farmacología , Distrofia Endotelial de Fuchs , Glucosa/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Óxido Nítrico/metabolismo , Ácido Oléico , Aceites de Plantas , Aceite de Girasol , Remodelación Vascular/efectos de los fármacos
12.
Sci Rep ; 10(1): 2902, 2020 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-32076010

RESUMEN

The experimental approach for the study of cardiometabolic disorders requires the use of animal models fed with commercial diets whose composition differs notably, even between diets used for control groups. While chow diets are usually made of agricultural by-products, purified low-fat diets (LF) contain a higher percentage of easy metabolizable carbohydrates, together with a reduced amount of polyunsaturated fatty acids, micronutrients and fiber, all associated with metabolic and vascular dysfunction. We hypothesize that the LF diet, commonly used in control animals, could promote adverse vascular and metabolic outcomes. To address this issue, 5-week-old male C57BL6J mice were fed with a standard (Chow) or a LF diet for 6 weeks. Changes in body weight, adiposity, biochemical parameters, systemic and aortic insulin sensitivity and endothelial function were recorded. LF diet did not modify body weight but significantly impaired systemic glucose tolerance and increased triglycerides and cholesterol levels. Endothelial function and aortic insulin sensitivity were significantly impaired in the LF group, due to a reduction of NO availability. These findings highlight the importance of selecting the proper control diet in metabolic studies. It may also suggest that some cardiometabolic alterations obtained in experimental studies using LF as a control diet may be underestimated.


Asunto(s)
Aorta Torácica/fisiología , Dieta , Glucosa/metabolismo , Homeostasis , Acetilcolina/farmacología , Adiposidad/efectos de los fármacos , Animales , Aorta Torácica/efectos de los fármacos , Disponibilidad Biológica , Peso Corporal/efectos de los fármacos , Metabolismo de los Hidratos de Carbono/efectos de los fármacos , Colesterol/metabolismo , Dieta con Restricción de Grasas , Fibras de la Dieta/farmacología , Ácidos Grasos Insaturados/farmacología , Glucosa/administración & dosificación , Insulina/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Óxido Nítrico/metabolismo , Fenilefrina/metabolismo , Solubilidad , Grasa Subcutánea/efectos de los fármacos , Vasodilatación/efectos de los fármacos
13.
Biomedicines ; 8(10)2020 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-33081182

RESUMEN

Fetal undernutrition programs hypertension and cardiovascular diseases, and resistance artery remodeling may be a contributing factor. We aimed to assess if fetal undernutrition induces resistance artery remodeling and the relationship with hypertension. Sprague-Dawley dams were fed ad libitum (Control) or with 50% of control intake between days 11 and 21 of gestation (maternal undernutrition, MUN). In six-month-old male and female offspring we assessed blood pressure (anesthetized and tail-cuff); mesenteric resistance artery (MRA) structure and mechanics (pressure myography), cellular and internal elastic lamina (IEL) organization (confocal microscopy) and plasma MMP-2 and MMP-9 activity (zymography). Systolic blood pressure (SBP, tail-cuff) and plasma MMP activity were assessed in 18-month-old rats. At the age of six months MUN males exhibited significantly higher blood pressure (anesthetized or tail-cuff) and plasma MMP-9 activity, while MUN females did not exhibit significant differences, compared to sex-matched controls. MRA from 6-month-old MUN males and females showed a smaller diameter, reduced adventitial, smooth muscle cell density and IEL fenestra area, and a leftward shift of stress-strain curves. At the age of eighteen months SBP and MMP-9 activity were higher in both MUN males and females, compared to sex-matched controls. These data suggest that fetal undernutrition induces MRA inward eutrophic remodeling and stiffness in both sexes, independent of blood pressure level. Resistance artery structural and mechanical alterations can participate in the development of hypertension in aged females and may contribute to adverse cardiovascular events associated with low birth weight in both sexes.

14.
J Nutr Biochem ; 78: 108342, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32004927

RESUMEN

The activation of endoplasmic reticulum (ER) stress and a reduction of AMP-dependent protein kinase (AMPK) phosphorylation have been described in obesity. We hypothesize that a moderate caloric restriction (CR) might contribute to reducing ER stress and increasing AMPK phosphorylation in peripheral tissues from genetically obese Zucker fa/fa rats and in peripheral blood mononuclear cells (PBMCs). Zucker Lean and Zucker fa/fa rats were fed with chow diet either ad libitum (AL) (C, as controls) or 80% of AL (CR) for 2 weeks, giving rise to four experimental groups: Lean C, Lean CR, fa/fa C and fa/fa CR. CR significantly increased AMPK phosphorylation in the liver, perirenal adipose tissue (PRAT) and PBMCs from fa/fa rats but not in the subcutaneous AT (SCAT), suggesting a reduced response of SCAT to CR. Liver samples of fa/fa rats exhibited an increased mRNA expression of PERK, EIF-2α, XBP-1(s), Chop and caspase 3, which was significantly reduced by CR. PRAT exhibited an overexpression of Edem and PDIA-4 in fa/fa rats, but only PDIA-4 expression was reduced by CR. eIF-2α phosphorylation was significantly increased in all studied tissues from fa/fa rats and reduced by CR. A negative correlation was detected between p-AMPK and p-eIF-2α in the liver, PRAT and PBMCs from fa/fa rats but not in SCAT. This study shows that a moderate CR reduces ER stress and improves AMPK phosphorylation in several peripheral tissues and in circulating PBMCs, suggesting that alterations observed in PBMCs could reflect metabolic alterations associated with obesity.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Restricción Calórica , Estrés del Retículo Endoplásmico , Leucocitos Mononucleares/metabolismo , Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Animales , Peso Corporal , Metabolismo de los Lípidos , Hígado/metabolismo , Masculino , Obesidad/metabolismo , Fosforilación , Ratas , Ratas Zucker
15.
Endocrinol Diabetes Nutr (Engl Ed) ; 66(7): 434-442, 2019.
Artículo en Inglés, Español | MEDLINE | ID: mdl-30833154

RESUMEN

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD), a condition that leads to fibrosis, is caused by intake of very high-fat diets (HFDs). However, while the negative impact on the liver of these diets has been an issue of interest, systematic research on the effect of HFDs are lacking. OBJECTIVE: To characterize the overall impact of HFDs on both molecular and morphological signs of liver remodeling. METHODS: A study was conducted on male C57BL/6J mice to assess the effect of 4- and 8-week HFDs (60% kcal from fat) on (i) liver steatosis and fibrosis, and (ii) expression of factors involved in inflammation and angiogenesis. RESULTS: After an 8-week HFD, vascular endothelial growth factor type-2 receptor (VEGF-R2) and fatty acid translocase/trombospondin-1 receptor (CD36) were overexpressed in liver tissue of mice given HFDs. These changes suggest impaired liver angiogenesis and occurred together with (i) increased GPR78-BiP and EIF2α phosphorylation, suggesting endoplasmic reticulum stress, (ii) induction of Col1a1 gene expression, a marker of fibrosis, and (iii) increased CD31 immunolabeling, consistent with active angiogenesis and fibrosis. CONCLUSION: Our data show that very HFDs promote a rapid inflammatory response, as well as deregulation of angiogenesis, both consistent with development of liver fibrosis.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Hepatitis Animal/etiología , Neovascularización Patológica/etiología , Adiposidad , Animales , Peso Corporal , Modelos Animales de Enfermedad , Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico , Regulación de la Expresión Génica , Hepatitis Animal/metabolismo , Hepatitis Animal/fisiopatología , Mediadores de Inflamación/metabolismo , Insulina/sangre , Leptina/sangre , Lipasa/metabolismo , Metabolismo de los Lípidos , Lípidos/sangre , Cirrosis Hepática/etiología , Cirrosis Hepática/metabolismo , Cirrosis Hepática/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/fisiopatología
16.
Cell Rep ; 27(2): 323-333.e5, 2019 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-30970240

RESUMEN

Ectopic lipid deposition (ELD) is defined by excess fat storage in locations not classically associated with adipose tissue (AT) storage. ELD is positively correlated with insulin resistance and increased risk of metabolic disorders. ELD appears as lipid droplets or adipocytes, whose cell origin is unknown. We previously showed that subcutaneous AT (ScAT) releases adipocyte progenitors into the circulation. Here, we demonstrate that triggering or preventing the release of adipocyte precursors from ScAT directly promoted or limited ectopic adipocyte formation in skeletal muscle in mice. Importantly, obesity-associated metabolic disorders could be mimicked by causing adipocyte precursor release without a high-fat diet. Finally, during nutrient overload, adipocyte progenitors exited ScAT, where their retention signals (CXCR4/CXCL12 axis) were greatly decreased, and further infiltrated skeletal muscles. These data provide insights into the formation of ELD associated with calorie overload and highlight adipocyte progenitor trafficking as a potential target in the treatment of metabolic diseases.


Asunto(s)
Grasa Subcutánea/metabolismo , Animales , Humanos , Absorción Intramuscular , Ratones , Células del Estroma/metabolismo
17.
Sci Rep ; 9(1): 599, 2019 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-30679477

RESUMEN

Infusions of murtilla leaves exhibit antioxidant, analgesic, and anti-inflammatory properties. Several compounds that are structurally similar to madecassic acid (MA), a component of murtilla leaf extract (ethyl acetate extract, EAE), have been shown to inhibit protein tyrosine phosphatase 1B (PTP1P). The aim of this study was to evaluate if EAE and two compounds identified in EAE (MA and myricetin [MYR]) could have a beneficial effect on systemic and vascular insulin sensitivity and endothelial function in a model of diet-induced obesity. Experiments were performed in 5-week-old male C57BL6J mice fed with a standard (LF) or a very high-fat diet (HF) for 4 weeks and treated with EAE, MA, MYR, or the vehicle as control (C). EAE significantly inhibited PTP1B. EAE and MA, but not MYR, significantly improved systemic insulin sensitivity in HF mice and vascular relaxation to Ach in aorta segments, due to a significant increase of eNOS phosphorylation and enhanced nitric oxide availability. EAE, MA, and MYR also accounted for increased relaxant responses to insulin in HF mice, thus evidencing that the treatments significantly improved aortic insulin sensitivity. This study shows for the first time that EAE and MA could constitute interesting candidates for treating insulin resistance and endothelial dysfunction associated with obesity.


Asunto(s)
Dieta Alta en Grasa , Endotelio Vascular/efectos de los fármacos , Myrtaceae/química , Obesidad/patología , Extractos Vegetales/farmacología , Triterpenos/farmacología , Animales , Aorta/metabolismo , Modelos Animales de Enfermedad , Endotelio Vascular/citología , Endotelio Vascular/metabolismo , Insulina/farmacología , Resistencia a la Insulina , Masculino , Ratones , Ratones Endogámicos C57BL , Myrtaceae/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Obesidad/metabolismo , Fosforilación , Extractos Vegetales/química , Extractos Vegetales/metabolismo , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 1/antagonistas & inhibidores , Proteína Tirosina Fosfatasa no Receptora Tipo 1/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Triterpenos/química , Triterpenos/metabolismo
18.
Free Radic Biol Med ; 139: 35-45, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31100477

RESUMEN

Caloric restriction (CR) improves endothelial function through the upregulation of adenosine monophosphate-activated protein kinase (AMPK) and endothelial nitric oxide synthase (eNOS). Moreover, hydrogen peroxide (H2O2) is upregulated in yeast subjected to CR. Our aim was to assess if mild short-term CR increases vascular H2O2 formation as a link with AMPK and eNOS activation. Twelve-week old Zucker obese (fa/fa) and control Zucker lean male rats were fed a standard chow either ad libitum (AL, n=10) or with a 20% CR (CR, n=10) for two weeks. CR significantly improved relaxation to ACh in fa/fa rats because of an enhanced endogenous production of H2O2 in aortic rings (H2O2 levels fa/faAL=0.5 ±â€¯0.05 nmol/mg vs. H2O2 levels fa/faCR=0.76 ±â€¯0.07 nmol/mg protein; p<0.05). Expression of mitochondrial superoxide dismutase (Mn-SOD) and total SOD activity were increased in aorta from fa/fa animals after CR. In cultured aortic endothelial cells, serum deprivation or 2-deoxy-d-glucose induced a significant increase in: i) superoxide anion and H2O2 levels, ii) p-AMPK/AMPK and p-eNOS/eNOS expression and iii) nitric oxide levels. This effect was reduced by catalase and strongly inhibited by Ca2+/calmodulin-dependent kinase II (CamkII) silencing. In conclusion, we propose that mild short-term CR might be a trigger of mechanisms aimed at protecting the vascular wall by the increase of H2O2, which then activates AMPK and nitric oxide release, thus improving endothelium-dependent relaxation. In addition, we demonstrate that CAMKII plays a key role in mediating CR-induced AMPK activation through H2O2 increase.


Asunto(s)
Proteínas Quinasas Activadas por AMP/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Restricción Calórica , Peróxido de Hidrógeno/metabolismo , Óxido Nítrico Sintasa de Tipo III/genética , Obesidad/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Aorta Torácica/metabolismo , Aorta Torácica/patología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Catalasa/genética , Catalasa/metabolismo , Desoxiglucosa/farmacología , Células Endoteliales/citología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Regulación de la Expresión Génica , Masculino , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Obesidad/metabolismo , Obesidad/patología , Ratas , Ratas Zucker , Transducción de Señal , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Superóxidos/metabolismo , Vasodilatación
19.
Front Physiol ; 10: 553, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31133882

RESUMEN

Bariatric surgery (BS) results in sustained weight loss and may reverse inflammation, metabolic alterations, extracellular matrix remodeling and arterial stiffness. We hypothesize that increased stiffening in omental arteries from obese patients might be associated with an increase in MMP activity and a decrease in p-AMPK, together with systemic oxidative stress and inflammation. Moreover, BS could contribute to reversing these alterations. This study was conducted with 38 patients of Caucasian origin: 31 adult patients with morbid obesity (9 men and 22 women; mean age 46 years and BMI = 42.7 ± 1.0 kg/m2) and 7 non-obese subjects (7 women; mean age 45 years and BMI = 22.7 ± 0.6 kg/m2). Seventeen obese patients were studied before and 12 months after BS. The stiffness index ß, an index of intrinsic arterial stiffness, was determined in omental arteries and was significantly higher in obese patients. Levels of phosphorylated AMPK (p-AMPKThr-172) and SIRT-1 were significantly lower in peripheral blood mononuclear cells (PBMCs) from obese patients than those from non-obese patients (p < 0.05) and were normalized after BS. Total and active MMP-9 activities, LDH, protein carbonyls and uric acid were higher in obese patients and reduced by BS. Moreover, there was a correlation between plasmatic LDH levels and the stiffness index ß. BS has a beneficial effect on abnormal MMP-9, LDH and AMPK activities that might be associated with the development of arterial stiffness in obese patients. Since these parameters are easily measured in blood samples, they could constitute potential biomarkers of cardiovascular risk in morbid obesity.

20.
Front Pharmacol ; 9: 1131, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30356804

RESUMEN

Albuminuria is an early marker of renovascular damage associated to an increase in oxidative stress. The Munich Wistar Frömter (MWF) rat is a model of chronic kidney disease (CKD), which exhibits endothelial dysfunction associated to low nitric oxide availability. We hypothesize that the new highly selective, non-steroidal mineralocorticoid receptor (MR) antagonist, finerenone, reverses both endothelial dysfunction and microalbuminuria. Twelve-week-old MWF (MWF-C; MWF-FIN) and aged-matched normoalbuminuric Wistar (W-C; W-FIN) rats were treated with finerenone (FIN, 10 mg/kg/day p.o.) or vehicle (C) for 4-week. Systolic blood pressure (SBP) and albuminuria were determined the last day of treatment. Finerenone lowered albuminuria by >40% and significantly reduced SBP in MWF. Aortic rings of MWF-C showed higher contractions to either noradrenaline (NA) or angiotensin II (Ang II), and lower relaxation to acetylcholine (Ach) than W-C rings. These alterations were reversed by finerenone to W-C control levels due to an upregulation in phosphorylated Akt and eNOS, and an increase in NO availability. Apocynin and 3-amino-1,2,4-triazole significantly reduced contractions to NA or Ang II in MWF-C, but not in MWF-FIN rings. Accordingly, a significant increase of Mn-superoxide dismutase (SOD) and Cu/Zn-SOD protein levels were observed in rings of MWF-FIN, without differences in p22phox, p47phox or catalase levels. Total SOD activity was increased in kidneys from MWF-FIN rats. In conclusion, finerenone improves endothelial dysfunction through an enhancement in NO bioavailability and a decrease in superoxide anion levels due to an upregulation in SOD activity. This is associated with an increase in renal SOD activity and a reduction of albuminuria.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA