Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(7): e2314085121, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38330013

RESUMEN

Cancer therapy, including immunotherapy, is inherently limited by chronic inflammation-induced tumorigenesis and toxicity within the tumor microenvironment. Thus, stimulating the resolution of inflammation may enhance immunotherapy and improve the toxicity of immune checkpoint inhibition (ICI). As epoxy-fatty acids (EpFAs) are degraded by the enzyme soluble epoxide hydrolase (sEH), the inhibition of sEH increases endogenous EpFA levels to promote the resolution of cancer-associated inflammation. Here, we demonstrate that systemic treatment with ICI induces sEH expression in multiple murine cancer models. Dietary omega-3 polyunsaturated fatty acid supplementation and pharmacologic sEH inhibition, both alone and in combination, significantly enhance anti-tumor activity of ICI in these models. Notably, pharmacological abrogation of the sEH pathway alone or in combination with ICI counter-regulates an ICI-induced pro-inflammatory and pro-tumorigenic cytokine storm. Thus, modulating endogenous EpFA levels through dietary supplementation or sEH inhibition may represent a unique strategy to enhance the anti-tumor activity of paradigm cancer therapies.


Asunto(s)
Epóxido Hidrolasas , Neoplasias , Ratones , Humanos , Animales , Epóxido Hidrolasas/metabolismo , Ácidos Grasos/metabolismo , Inflamación/metabolismo , Neoplasias/terapia , Inmunoterapia , Microambiente Tumoral
2.
Proc Natl Acad Sci U S A ; 116(13): 6292-6297, 2019 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-30862734

RESUMEN

Inflammation in the tumor microenvironment is a strong promoter of tumor growth. Substantial epidemiologic evidence suggests that aspirin, which suppresses inflammation, reduces the risk of cancer. The mechanism by which aspirin inhibits cancer has remained unclear, and toxicity has limited its clinical use. Aspirin not only blocks the biosynthesis of prostaglandins, but also stimulates the endogenous production of anti-inflammatory and proresolving mediators termed aspirin-triggered specialized proresolving mediators (AT-SPMs), such as aspirin-triggered resolvins (AT-RvDs) and lipoxins (AT-LXs). Using genetic and pharmacologic manipulation of a proresolving receptor, we demonstrate that AT-RvDs mediate the antitumor activity of aspirin. Moreover, treatment of mice with AT-RvDs (e.g., AT-RvD1 and AT-RvD3) or AT-LXA4 inhibited primary tumor growth by enhancing macrophage phagocytosis of tumor cell debris and counter-regulating macrophage-secreted proinflammatory cytokines, including migration inhibitory factor, plasminogen activator inhibitor-1, and C-C motif chemokine ligand 2/monocyte chemoattractant protein 1. Thus, the pro-resolution activity of AT-resolvins and AT-lipoxins may explain some of aspirin's broad anticancer activity. These AT-SPMs are active at considerably lower concentrations than aspirin, and thus may provide a nontoxic approach to harnessing aspirin's anticancer activity.


Asunto(s)
Antineoplásicos/farmacología , Aspirina/farmacología , Neoplasias/tratamiento farmacológico , Neoplasias/prevención & control , Animales , Aspirina/administración & dosificación , Quimiocina CCL2/metabolismo , Quimiocinas/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Ácidos Docosahexaenoicos/metabolismo , Eicosanoides/metabolismo , Ácidos Grasos Insaturados/metabolismo , Femenino , Inflamación/tratamiento farmacológico , Lipoxinas/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Metabolómica , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Proteínas Asociadas a Microtúbulos/metabolismo , Metástasis de la Neoplasia/tratamiento farmacológico , Metástasis de la Neoplasia/prevención & control , Proteínas del Tejido Nervioso/metabolismo , Fagocitosis/efectos de los fármacos , Inactivadores Plasminogénicos/metabolismo , Prostaglandinas/metabolismo
3.
Cancer Metastasis Rev ; 39(2): 337-340, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32385712

RESUMEN

Severe coronavirus disease (COVID-19) is characterized by pulmonary hyper-inflammation and potentially life-threatening "cytokine storms". Controlling the local and systemic inflammatory response in COVID-19 may be as important as anti-viral therapies. Endogenous lipid autacoid mediators, referred to as eicosanoids, play a critical role in the induction of inflammation and pro-inflammatory cytokine production. SARS-CoV-2 may trigger a cell death ("debris")-induced "eicosanoid storm", including prostaglandins and leukotrienes, which in turn initiates a robust inflammatory response. A paradigm shift is emerging in our understanding of the resolution of inflammation as an active biochemical process with the discovery of novel endogenous specialized pro-resolving lipid autacoid mediators (SPMs), such as resolvins. Resolvins and other SPMs stimulate macrophage-mediated clearance of debris and counter pro-inflammatory cytokine production, a process called inflammation resolution. SPMs and their lipid precursors exhibit anti-viral activity at nanogram doses in the setting of influenza without being immunosuppressive. SPMs also promote anti-viral B cell antibodies and lymphocyte activity, highlighting their potential use in the treatment of COVID-19. Soluble epoxide hydrolase (sEH) inhibitors stabilize arachidonic acid-derived epoxyeicosatrienoic acids (EETs), which also stimulate inflammation resolution by promoting the production of pro-resolution mediators, activating anti-inflammatory processes, and preventing the cytokine storm. Both resolvins and EETs also attenuate pathological thrombosis and promote clot removal, which is emerging as a key pathology of COVID-19 infection. Thus, both SPMs and sEH inhibitors may promote the resolution of inflammation in COVID-19, thereby reducing acute respiratory distress syndrome (ARDS) and other life-threatening complications associated with robust viral-induced inflammation. While most COVID-19 clinical trials focus on "anti-viral" and "anti-inflammatory" strategies, stimulating inflammation resolution is a novel host-centric therapeutic avenue. Importantly, SPMs and sEH inhibitors are currently in clinical trials for other inflammatory diseases and could be rapidly translated for the management of COVID-19 via debris clearance and inflammatory cytokine suppression. Here, we discuss using pro-resolution mediators as a potential complement to current anti-viral strategies for COVID-19.


Asunto(s)
Antiinflamatorios no Esteroideos/uso terapéutico , Antivirales/uso terapéutico , Betacoronavirus/inmunología , Infecciones por Coronavirus/tratamiento farmacológico , Síndrome de Liberación de Citoquinas/tratamiento farmacológico , Neumonía Viral/tratamiento farmacológico , Síndrome de Dificultad Respiratoria/terapia , Antiinflamatorios no Esteroideos/farmacología , Betacoronavirus/aislamiento & purificación , COVID-19 , Ensayos Clínicos como Asunto , Infecciones por Coronavirus/complicaciones , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Síndrome de Liberación de Citoquinas/inmunología , Citocinas/inmunología , Citocinas/metabolismo , Eicosanoides/inmunología , Eicosanoides/metabolismo , Epóxido Hidrolasas/antagonistas & inhibidores , Epóxido Hidrolasas/metabolismo , Humanos , Macrófagos/inmunología , Macrófagos/metabolismo , Pandemias , Neumonía Viral/complicaciones , Neumonía Viral/inmunología , Neumonía Viral/virología , Alveolos Pulmonares/inmunología , Alveolos Pulmonares/metabolismo , Alveolos Pulmonares/virología , Síndrome de Dificultad Respiratoria/inmunología , SARS-CoV-2
4.
Am J Pathol ; 190(9): 1782-1788, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32650004

RESUMEN

Severe coronavirus disease 2019 (COVID-19) symptoms, including systemic inflammatory response and multisystem organ failure, are now affecting thousands of infected patients and causing widespread mortality. Coronavirus infection causes tissue damage, which triggers the endoplasmic reticulum stress response and subsequent eicosanoid and cytokine storms. Although proinflammatory eicosanoids, including prostaglandins, thromboxanes, and leukotrienes, are critical mediators of physiological processes, such as inflammation, fever, allergy, and pain, their roles in COVID-19 are poorly characterized. Arachidonic acid-derived epoxyeicosatrienoic acids could alleviate the systemic hyperinflammatory response in COVID-19 infection by modulating endoplasmic reticulum stress and stimulating the resolution of inflammation. Soluble epoxide hydrolase (sEH) inhibitors, which increase endogenous epoxyeicosatrienoic acid levels, exhibit potent anti-inflammatory activity and inhibit various pathologic processes in preclinical disease models, including pulmonary fibrosis, thrombosis, and acute respiratory distress syndrome. Therefore, targeting eicosanoids and sEH could be a novel therapeutic approach in combating COVID-19. In this review, we discuss the predominant role of eicosanoids in regulating the inflammatory cascade and propose the potential application of sEH inhibitors in alleviating COVID-19 symptoms. The host-protective action of omega-3 fatty acid-derived epoxyeicosanoids and specialized proresolving mediators in regulating anti-inflammation and antiviral response is also discussed. Future studies determining the eicosanoid profile in COVID-19 patients or preclinical models are pivotal in providing novel insights into coronavirus-host interaction and inflammation modulation.


Asunto(s)
Antiinflamatorios/farmacología , Betacoronavirus/efectos de los fármacos , Infecciones por Coronavirus/tratamiento farmacológico , Neumonía Viral/tratamiento farmacológico , Animales , Betacoronavirus/patogenicidad , COVID-19 , Eicosanoides/farmacología , Eicosanoides/uso terapéutico , Estrés del Retículo Endoplásmico/efectos de los fármacos , Humanos , Pandemias , SARS-CoV-2
5.
Pediatr Diabetes ; 22(5): 729-733, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33259116

RESUMEN

Diabetes prevalence within the global population has nearly doubled since 1980, with the most rapid growth occurring in low- and middle-income countries. Diabetes management in resource-limited settings such as Haiti presents many challenges, including the storage of insulin. Despite a lack of published data on insulin thermostability, storage at 2-8°C or at room temperature (25°C) is recommended. In Haiti, access to refrigeration and thereby proper insulin storage is severely limited. Commercial storage devices such as the FRIO cooling wallet are cost-prohibitive and not available locally, and alternatives such as small clay pots are fragile and nonportable. Here, we designed and tested the cooling efficacy of a homemade wallet made of acrylate polymer beads and a hand-sewn cotton pouch compared to a FRIO wallet and a clay pot. All studies were conducted over a ten-day period at the Kay Mackenson Clinic in Montrouis, Haiti. Temperature and humidity values were continuously collected using wireless monitors placed inside each device, and hourly ambient temperature and humidity values were manually recorded. Evaporative cooling efficacy was calculated using collected data. The homemade wallet and FRIO cooling wallet demonstrated comparable cooling efficacy with an average of 71% and 73%, respectively. The clay pot demonstrated significantly decreased efficacy with an average of 27% (p < 0.05). The homemade insulin wallet is a promising alternative for the storage of insulin in low-resource settings without the financial and physical barriers of commercial and locally sourced devices. Additionally, this wallet could be readily adapted for the storage of other perishable medical supplies in low-income countries.


Asunto(s)
Insulina , Refrigeración/instrumentación , Agua/fisiología , Frío , Almacenaje de Medicamentos/métodos , Diseño de Equipo , Haití , Humanos , Humedad , Insulina/uso terapéutico , Microesferas , Refrigeración/métodos , Temperatura , Agua/química
6.
Cancer Metastasis Rev ; 37(2-3): 557-572, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30136088

RESUMEN

Bioactive lipids are essential components of human cells and tissues. As discussed in this review, the cancer lipidome is diverse and malleable, with the ability to promote or inhibit cancer pathogenesis. Targeting lipids within the tumor and surrounding microenvironment may be a novel therapeutic approach for treating cancer patients. Additionally, the emergence of a novel super-family of lipid mediators termed specialized pro-resolving mediators (SPMs) has revealed a new role for bioactive lipid mediators in the resolution of inflammation in cancer biology. The role of SPMs in cancer holds great promise in our understanding of cancer pathogenesis and can ultimately be used in future cancer diagnostics and therapy.


Asunto(s)
Antineoplásicos/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Lípidos , Terapia Molecular Dirigida , Neoplasias/etiología , Neoplasias/metabolismo , Animales , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Humanos , Mediadores de Inflamación/metabolismo , Lípidos/química , Neoplasias/diagnóstico , Neoplasias/tratamiento farmacológico , Relación Estructura-Actividad
7.
BMC Genomics ; 15: 657, 2014 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-25104606

RESUMEN

BACKGROUND: Autogenous cis-regulators of ribosomal protein synthesis play a critical role in maintaining the stoichiometry of ribosome components. Structured portions within an mRNA transcript typically interact with specific ribosomal proteins to prevent expression of the entire operon, thus balancing levels of ribosomal proteins across transcriptional units. Three distinct RNA structures from different bacterial phyla have demonstrated interactions with S15 to regulate gene expression; however, these RNAs are distributed across a small fraction of bacterial diversity. RESULTS: We used comparative genomics in combination with analysis of existing transcriptomic data to identify three novel putative RNA structures associated with the S15 coding region in microbial genomes. These structures are completely distinct from those previously published and encompass potential regulatory regions including ribosome-binding sites. To validate the biological relevance of our findings, we demonstrate that an example of the Alphaproteobacterial RNA from Rhizobium radiobacter specifically interacts with S15 in vitro, and allows in vivo regulation of gene expression in an E. coli reporter system. In addition, structural probing and nuclease protection assays confirm the predicted secondary structure and indicate nucleotides required for protein interaction. CONCLUSIONS: This work illustrates the importance of integrating comparative genomic and transcriptomic approaches during de novo ncRNA identification and reveals a diversity of distinct natural RNA regulators that support analogous biological functions. Furthermore, this work indicates that many additional uncharacterized RNA regulators likely exist within bacterial genomes and that the plasticity of RNA structure allows unique, and likely independently derived, solutions to the same biological problem.


Asunto(s)
Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Proteínas Bacterianas/metabolismo , Genómica , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , Proteínas Ribosómicas/metabolismo , Secuencia de Bases , Sitios de Unión , Mutación , Especificidad por Sustrato
8.
Pharmacol Ther ; 227: 107879, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33915177

RESUMEN

The resolution of inflammation has emerged as a critical endogenous process that protects host tissues from prolonged or excessive inflammation that can become chronic. Failure of the resolution of inflammation is a key pathological mechanism that drives the progression of numerous inflammation-driven diseases. Essential polyunsaturated fatty acid (PUFA)-derived autacoid mediators termed 'specialized pro-resolving mediators' (SPMs) regulate endogenous resolution programs by limiting further neutrophil tissue infiltration and stimulating local immune cell (e.g., macrophage)-mediated clearance of apoptotic polymorphonuclear neutrophils, cellular debris, and microbes, as well as counter-regulating eicosanoid/cytokine production. The SPM superfamily encompasses lipoxins, resolvins, protectins, and maresins. Our understanding of the resolution phase of acute inflammation has grown exponentially in the past three decades with the discovery of novel pro-resolving lipid mediators, their pro-efferocytosis mechanisms, and their receptors. Technological advancement has further facilitated lipid mediator metabolipidomic based profiling of healthy and diseased human tissues, highlighting the extraordinary therapeutic potential of SPMs across a broad array of inflammatory diseases including cancer. As current front-line cancer therapies such as surgery, chemotherapy, and radiation may induce various unwanted side effects such as robust pro-inflammatory and pro-tumorigenic host responses, characterizing SPMs and their receptors as novel therapeutic targets may have important implications as a new direction for host-targeted cancer therapy. Here, we discuss the origins of inflammation resolution, key discoveries and the failure of resolution mechanisms in diseases with an emphasis on cancer, and future directions focused on novel therapeutic applications for this exciting and rapidly expanding field.


Asunto(s)
Inflamación , Biología , Humanos , Inflamación/tratamiento farmacológico , Inflamación/patología , Medicina
9.
J Clin Invest ; 129(7): 2964-2979, 2019 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-31205032

RESUMEN

Cancer therapy is a double-edged sword, as surgery and chemotherapy can induce an inflammatory/immunosuppressive injury response that promotes dormancy escape and tumor recurrence. We hypothesized that these events could be altered by early blockade of the inflammatory cascade and/or by accelerating the resolution of inflammation. Preoperative, but not postoperative, administration of the nonsteroidal antiinflammatory drug ketorolac and/or resolvins, a family of specialized proresolving autacoid mediators, eliminated micrometastases in multiple tumor-resection models, resulting in long-term survival. Ketorolac unleashed anticancer T cell immunity that was augmented by immune checkpoint blockade, negated by adjuvant chemotherapy, and dependent on inhibition of the COX-1/thromboxane A2 (TXA2) pathway. Preoperative stimulation of inflammation resolution via resolvins (RvD2, RvD3, and RvD4) inhibited metastases and induced T cell responses. Ketorolac and resolvins exhibited synergistic antitumor activity and prevented surgery- or chemotherapy-induced dormancy escape. Thus, simultaneously blocking the ensuing proinflammatory response and activating endogenous resolution programs before surgery may eliminate micrometastases and reduce tumor recurrence.


Asunto(s)
Ácidos Docosahexaenoicos/farmacología , Inmunidad Celular/efectos de los fármacos , Ketorolaco/farmacología , Recurrencia Local de Neoplasia/prevención & control , Neoplasias Experimentales , Cuidados Preoperatorios , Linfocitos T/metabolismo , Animales , Masculino , Ratones , Ratones Noqueados , Metástasis de la Neoplasia , Recurrencia Local de Neoplasia/metabolismo , Recurrencia Local de Neoplasia/patología , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Neoplasias Experimentales/terapia , Linfocitos T/patología
11.
J Exp Med ; 215(1): 115-140, 2018 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-29191914

RESUMEN

Cancer therapy reduces tumor burden by killing tumor cells, yet it simultaneously creates tumor cell debris that may stimulate inflammation and tumor growth. Thus, conventional cancer therapy is inherently a double-edged sword. In this study, we show that tumor cells killed by chemotherapy or targeted therapy ("tumor cell debris") stimulate primary tumor growth when coinjected with a subthreshold (nontumorigenic) inoculum of tumor cells by triggering macrophage proinflammatory cytokine release after phosphatidylserine exposure. Debris-stimulated tumors were inhibited by antiinflammatory and proresolving lipid autacoids, namely resolvin D1 (RvD1), RvD2, or RvE1. These mediators specifically inhibit debris-stimulated cancer progression by enhancing clearance of debris via macrophage phagocytosis in multiple tumor types. Resolvins counterregulate the release of cytokines/chemokines, including TNFα, IL-6, IL-8, CCL4, and CCL5, by human macrophages stimulated with cell debris. These results demonstrate that enhancing endogenous clearance of tumor cell debris is a new therapeutic target that may complement cytotoxic cancer therapies.


Asunto(s)
Antineoplásicos/farmacología , Ácidos Docosahexaenoicos/farmacología , Animales , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Proliferación Celular , Citocinas/metabolismo , Modelos Animales de Enfermedad , Humanos , Mediadores de Inflamación/metabolismo , Macrófagos/metabolismo , Melanoma Experimental , Ratones , Ratones Noqueados , Ratones Transgénicos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Fagocitosis , Fosfatidilserinas/metabolismo , Carga Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA