Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Plant Physiol ; 170(2): 1014-29, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26662602

RESUMEN

Under saline conditions, higher plants restrict the accumulation of chloride ions (Cl(-)) in the shoot by regulating their transfer from the root symplast into the xylem-associated apoplast. To identify molecular mechanisms underpinning this phenomenon, we undertook a transcriptional screen of salt stressed Arabidopsis (Arabidopsis thaliana) roots. Microarrays, quantitative RT-PCR, and promoter-GUS fusions identified a candidate gene involved in Cl(-) xylem loading from the Nitrate transporter 1/Peptide Transporter family (NPF2.4). This gene was highly expressed in the root stele compared to the cortex, and its expression decreased after exposure to NaCl or abscisic acid. NPF2.4 fused to fluorescent proteins, expressed either transiently or stably, was targeted to the plasma membrane. Electrophysiological analysis of NPF2.4 in Xenopus laevis oocytes suggested that NPF2.4 catalyzed passive Cl(-) efflux out of cells and was much less permeable to NO3(-). Shoot Cl(-) accumulation was decreased following NPF2.4 artificial microRNA knockdown, whereas it was increased by overexpression of NPF2.4. Taken together, these results suggest that NPF2.4 is involved in long-distance transport of Cl(-) in plants, playing a role in the loading and the regulation of Cl(-) loading into the xylem of Arabidopsis roots during salinity stress.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cloruros/metabolismo , Raíces de Plantas/metabolismo , Brotes de la Planta/metabolismo , Ácido Abscísico/farmacología , Animales , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Transporte Biológico/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Biología Computacional , Regulación hacia Abajo/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Genes de Plantas , Estudios de Asociación Genética , Glucuronidasa/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Oocitos/efectos de los fármacos , Oocitos/metabolismo , Raíces de Plantas/efectos de los fármacos , Brotes de la Planta/efectos de los fármacos , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Cloruro de Sodio/farmacología , Xenopus laevis , Xilema/efectos de los fármacos , Xilema/metabolismo
2.
J Exp Bot ; 67(15): 4495-505, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27340232

RESUMEN

Salinity tolerance is correlated with shoot chloride (Cl(-)) exclusion in multiple crops, but the molecular mechanisms of long-distance Cl(-) transport are poorly defined. Here, we characterize the in planta role of AtSLAH1 (a homologue of the slow type anion channel-associated 1 (SLAC1)). This protein, localized to the plasma membrane of root stelar cells, has its expression reduced by salt or ABA, which are key predictions for a protein involved with loading Cl(-) into the root xylem. Artificial microRNA knockdown mutants of AtSLAH1 had significantly reduced shoot Cl(-) accumulation when grown under low Cl(-), whereas shoot Cl(-) increased and the shoot nitrate/chloride ratio decreased following AtSLAH1 constitutive or stelar-specific overexpression when grown in high Cl(-) In both sets of overexpression lines a significant reduction in shoot biomass over the null segregants was observed under high Cl(-) supply, but not low Cl(-) supply. Further in planta data showed AtSLAH3 overexpression increased the shoot nitrate/chloride ratio, consistent with AtSLAH3 favouring nitrate transport. Heterologous expression of AtSLAH1 in Xenopus laevis oocytes led to no detectible transport, suggesting the need for post-translational modifications for AtSLAH1 to be active. Our in planta data are consistent with AtSLAH1 having a role in controlling root-to-shoot Cl(-) transport.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/fisiología , Cetilpiridinio/metabolismo , Brotes de la Planta/metabolismo , Tolerancia a la Sal/fisiología , Ácido Abscísico/fisiología , Animales , Animales Modificados Genéticamente , Arabidopsis/metabolismo , Regulación hacia Abajo , Regulación de la Expresión Génica de las Plantas/fisiología , Oocitos/metabolismo , Reguladores del Crecimiento de las Plantas/fisiología , Brotes de la Planta/fisiología , Plantas Modificadas Genéticamente , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA