Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nucleic Acids Res ; 49(21): 12394-12410, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34791436

RESUMEN

Mobile group II introns are site-specific retrotransposable elements abundant in bacterial and organellar genomes. They are composed of a large and highly structured ribozyme and an intron-encoded reverse transcriptase that binds tightly to its intron to yield a ribonucleoprotein (RNP) particle. During the first stage of the mobility pathway, the intron RNA catalyses its own insertion directly into the DNA target site. Recognition of the proper target rests primarily on multiple base-pairing interactions between the intron RNA and the target DNA, while the protein makes contacts with only a few target positions by yet-unidentified mechanisms. Using a combination of comparative sequence analyses and in vivo mobility assays we demonstrate the existence of a new base-pairing interaction named EBS2a-IBS2a between the intron RNA and its DNA target site. This pairing adopts a Watson-Crick geometry and is essential for intron mobility, most probably by driving unwinding of the DNA duplex. Importantly, formation of EBS2a-IBS2a also requires the reverse transcriptase enzyme which stabilizes the pairing in a non-sequence-specific manner. In addition to bringing to light a new structural device that allows subgroup IIB1 and IIB2 introns to invade their targets with high efficiency and specificity our work has important implications for the biotechnological applications of group II introns in bacterial gene targeting.


Asunto(s)
ADN/genética , Intrones/genética , ARN Catalítico/genética , ADN Polimerasa Dirigida por ARN/genética , ARN/genética , Retroelementos/genética , Emparejamiento Base/genética , Secuencia de Bases , Sitios de Unión/genética , ADN/química , ADN/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Exones/genética , Mutagénesis Insercional , Conformación de Ácido Nucleico , Sistemas de Lectura Abierta/genética , ARN/química , ARN/metabolismo , ARN Catalítico/metabolismo , ADN Polimerasa Dirigida por ARN/metabolismo
2.
Proc Natl Acad Sci U S A ; 114(49): 12934-12939, 2017 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-29158377

RESUMEN

Ribosomal RNAs (rRNAs) are main effectors of messenger RNA (mRNA) decoding, peptide-bond formation, and ribosome dynamics during translation. Ribose 2'-O-methylation (2'-O-Me) is the most abundant rRNA chemical modification, and displays a complex pattern in rRNA. 2'-O-Me was shown to be essential for accurate and efficient protein synthesis in eukaryotic cells. However, whether rRNA 2'-O-Me is an adjustable feature of the human ribosome and a means of regulating ribosome function remains to be determined. Here we challenged rRNA 2'-O-Me globally by inhibiting the rRNA methyl-transferase fibrillarin in human cells. Using RiboMethSeq, a nonbiased quantitative mapping of 2'-O-Me, we identified a repertoire of 2'-O-Me sites subjected to variation and demonstrate that functional domains of ribosomes are targets of 2'-O-Me plasticity. Using the cricket paralysis virus internal ribosome entry site element, coupled to in vitro translation, we show that the intrinsic capability of ribosomes to translate mRNAs is modulated through a 2'-O-Me pattern and not by nonribosomal actors of the translational machinery. Our data establish rRNA 2'-O-Me plasticity as a mechanism providing functional specificity to human ribosomes.


Asunto(s)
Biosíntesis de Proteínas , ARN Ribosómico/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Células HeLa , Humanos , Metilación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA