Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 561(7722): 189-194, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30209367

RESUMEN

Multidrug-resistant bacteria are spreading at alarming rates, and despite extensive efforts no new class of antibiotic with activity against Gram-negative bacteria has been approved in over fifty years. Natural products and their derivatives have a key role in combating Gram-negative pathogens. Here we report chemical optimization of the arylomycins-a class of natural products with weak activity and limited spectrum-to obtain G0775, a molecule with potent, broad-spectrum activity against Gram-negative bacteria. G0775 inhibits the essential bacterial type I signal peptidase, a new antibiotic target, through an unprecedented molecular mechanism. It circumvents existing antibiotic resistance mechanisms and retains activity against contemporary multidrug-resistant Gram-negative clinical isolates in vitro and in several in vivo infection models. These findings demonstrate that optimized arylomycin analogues such as G0775 could translate into new therapies to address the growing threat of multidrug-resistant Gram-negative infections.


Asunto(s)
Antibacterianos/clasificación , Antibacterianos/farmacología , Bacterias Gramnegativas/efectos de los fármacos , Péptidos Cíclicos/farmacología , Biocatálisis/efectos de los fármacos , Productos Biológicos/clasificación , Productos Biológicos/farmacología , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Escherichia coli/enzimología , Bacterias Gramnegativas/enzimología , Bacterias Gramnegativas/patogenicidad , Infecciones por Bacterias Gramnegativas/tratamiento farmacológico , Infecciones por Bacterias Gramnegativas/microbiología , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/enzimología , Klebsiella pneumoniae/patogenicidad , Lisina/metabolismo , Proteínas de la Membrana/antagonistas & inhibidores , Pruebas de Sensibilidad Microbiana , Péptidos Cíclicos/química , Porinas , Unión Proteica , Dominios Proteicos , Serina Endopeptidasas , Especificidad por Sustrato
2.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33443214

RESUMEN

Tandem gene amplification is a frequent and dynamic source of antibiotic resistance in bacteria. Ongoing expansions and contractions of repeat arrays during population growth are expected to manifest as cell-to-cell differences in copy number (CN). As a result, a clonal bacterial culture could comprise subpopulations of cells with different levels of antibiotic sensitivity that result from variable gene dosage. Despite the high potential for misclassification of heterogenous cell populations as either antibiotic-susceptible or fully resistant in clinical settings, and the concomitant risk of inappropriate treatment, CN distribution among cells has defied analysis. Here, we use the MinION single-molecule nanopore sequencer to uncover CN heterogeneity in clonal populations of Escherichia coli and Acinetobacter baumannii grown from single cells isolated while selecting for resistance to an optimized arylomycin, a member of a recently discovered class of Gram-negative antibiotic. We found that gene amplification of the arylomycin target, bacterial type I signal peptidase LepB, is a mechanism of unstable arylomycin resistance and demonstrate in E. coli that amplification instability is independent of RecA. This instability drives the emergence of a nonuniform distribution of lepB CN among cells with a range of 1 to at least 50 copies of lepB identified in a single clonal population. In sum, this remarkable heterogeneity, and the evolutionary plasticity it fuels, illustrates how gene amplification can enable bacterial populations to respond rapidly to novel antibiotics. This study establishes a rationale for further nanopore-sequencing studies of heterogeneous cell populations to uncover CN variability at single-molecule resolution.


Asunto(s)
Acinetobacter baumannii/genética , Antibacterianos/farmacología , Farmacorresistencia Microbiana/genética , Escherichia coli/genética , Amplificación de Genes/efectos de los fármacos , Proteínas de la Membrana/genética , Secuenciación de Nanoporos/métodos , Péptidos Cíclicos/genética , Serina Endopeptidasas/genética , Variaciones en el Número de Copia de ADN , Proteínas de Unión al ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Heterogeneidad Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Pruebas de Sensibilidad Microbiana , Mutación , Secuenciación de Nanoporos/instrumentación , Rec A Recombinasas/metabolismo
3.
Nature ; 476(7360): 341-5, 2011 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-21685886

RESUMEN

Mitochondria from diverse organisms are capable of transporting large amounts of Ca(2+) via a ruthenium-red-sensitive, membrane-potential-dependent mechanism called the uniporter. Although the uniporter's biophysical properties have been studied extensively, its molecular composition remains elusive. We recently used comparative proteomics to identify MICU1 (also known as CBARA1), an EF-hand-containing protein that serves as a putative regulator of the uniporter. Here, we use whole-genome phylogenetic profiling, genome-wide RNA co-expression analysis and organelle-wide protein coexpression analysis to predict proteins functionally related to MICU1. All three methods converge on a novel predicted transmembrane protein, CCDC109A, that we now call 'mitochondrial calcium uniporter' (MCU). MCU forms oligomers in the mitochondrial inner membrane, physically interacts with MICU1, and resides within a large molecular weight complex. Silencing MCU in cultured cells or in vivo in mouse liver severely abrogates mitochondrial Ca(2+) uptake, whereas mitochondrial respiration and membrane potential remain fully intact. MCU has two predicted transmembrane helices, which are separated by a highly conserved linker facing the intermembrane space. Acidic residues in this linker are required for its full activity. However, an S259A point mutation retains function but confers resistance to Ru360, the most potent inhibitor of the uniporter. Our genomic, physiological, biochemical and pharmacological data firmly establish MCU as an essential component of the mitochondrial Ca(2+) uniporter.


Asunto(s)
Canales de Calcio/química , Canales de Calcio/metabolismo , Genómica , Secuencia de Aminoácidos , Animales , Calcio/metabolismo , Canales de Calcio/genética , Células HEK293 , Células HeLa , Humanos , Transporte Iónico , Ratones , Mitocondrias Hepáticas/metabolismo , Membranas Mitocondriales/química , Membranas Mitocondriales/metabolismo , Datos de Secuencia Molecular , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Filogenia , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína
4.
Nature ; 467(7313): 291-6, 2010 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-20693986

RESUMEN

Mitochondrial calcium uptake has a central role in cell physiology by stimulating ATP production, shaping cytosolic calcium transients and regulating cell death. The biophysical properties of mitochondrial calcium uptake have been studied in detail, but the underlying proteins remain elusive. Here we use an integrative strategy to predict human genes involved in mitochondrial calcium entry based on clues from comparative physiology, evolutionary genomics and organelle proteomics. RNA interference against 13 top candidates highlighted one gene, CBARA1, that we call hereafter mitochondrial calcium uptake 1 (MICU1). Silencing MICU1 does not disrupt mitochondrial respiration or membrane potential but abolishes mitochondrial calcium entry in intact and permeabilized cells, and attenuates the metabolic coupling between cytosolic calcium transients and activation of matrix dehydrogenases. MICU1 is associated with the mitochondrial inner membrane and has two canonical EF hands that are essential for its activity, indicating a role in calcium sensing. MICU1 represents the founding member of a set of proteins required for high-capacity mitochondrial calcium uptake. Its discovery may lead to the complete molecular characterization of mitochondrial calcium uptake pathways, and offers genetic strategies for understanding their contribution to normal physiology and disease.


Asunto(s)
Alérgenos/química , Alérgenos/metabolismo , Señalización del Calcio , Proteínas de Unión al Calcio/química , Proteínas de Unión al Calcio/metabolismo , Calcio/metabolismo , Motivos EF Hand , Mitocondrias/metabolismo , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Alérgenos/genética , Secuencia de Aminoácidos , Antígenos de Plantas , Proteínas de Unión al Calcio/deficiencia , Proteínas de Unión al Calcio/genética , Proteínas de Transporte de Catión , Respiración de la Célula , Citoplasma/metabolismo , ADN Mitocondrial/análisis , Retículo Endoplásmico/metabolismo , Técnicas de Silenciamiento del Gen , Células HeLa , Homeostasis , Humanos , Potenciales de la Membrana , Proteínas de Transporte de Membrana Mitocondrial , Proteínas Mitocondriales/deficiencia , Proteínas Mitocondriales/genética , NAD/metabolismo , NADP/metabolismo , Fosforilación Oxidativa , Estructura Terciaria de Proteína , Transporte de Proteínas , Interferencia de ARN
5.
Proc Natl Acad Sci U S A ; 109(31): 12740-5, 2012 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-22802628

RESUMEN

Phenotypic heterogeneity displayed by a clonal bacterial population permits a small fraction of cells to survive prolonged exposure to antibiotics. Although first described over 60 y ago, the molecular mechanisms underlying this behavior, termed persistence, remain largely unknown. To systematically explore the genetic basis of persistence, we selected a library of transposon-mutagenized Escherichia coli cells for survival to multiple rounds of lethal ampicillin exposure. Application of microarray-based genetic footprinting revealed a large number of loci that drastically elevate persistence frequency through null mutations and domain disruptions. In one case, the C-terminal disruption of methionyl-tRNA synthetase (MetG) results in a 10,000-fold higher persistence frequency than wild type. We discovered a mechanism by which null mutations in transketolase A (tktA) and glycerol-3-phosphate (G3P) dehydrogenase (glpD) increase persistence through metabolic flux alterations that increase intracellular levels of the growth-inhibitory metabolite methylglyoxal. Systematic double-mutant analyses revealed the genetic network context in which such persistent mutants function. Our findings reveal a large mutational target size for increasing persistence frequency, which has fundamental implications for the emergence of antibiotic tolerance in the clinical setting.


Asunto(s)
Ampicilina/farmacología , Antibacterianos/farmacología , Farmacorresistencia Bacteriana , Proteínas de Escherichia coli , Escherichia coli , Mutación , Huella de ADN , Farmacorresistencia Bacteriana/efectos de los fármacos , Farmacorresistencia Bacteriana/genética , Escherichia coli/enzimología , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos
6.
PLoS Genet ; 3(9): 1644-60, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17941710

RESUMEN

We have developed a powerful experimental framework that combines competitive selection and microarray-based genetic footprinting to comprehensively reveal the genetic basis of bacterial behaviors. Application of this method to Escherichia coli motility identifies 95% of the known flagellar and chemotaxis genes, and reveals three dozen novel loci that, to varying degrees and through diverse mechanisms, affect motility. To probe the network context in which these genes function, we developed a method that uncovers genome-wide epistatic interactions through comprehensive analyses of double-mutant phenotypes. This allows us to place the novel genes within the context of signaling and regulatory networks, including the Rcs phosphorelay pathway and the cyclic di-GMP second-messenger system. This unifying framework enables sensitive and comprehensive genetic characterization of complex behaviors across the microbial biosphere.


Asunto(s)
Bacillus subtilis/fisiología , Quimiotaxis , Escherichia coli/fisiología , Bacillus subtilis/genética , Epistasis Genética , Escherichia coli/genética , Genoma Bacteriano , Sistemas de Mensajero Secundario , Transducción de Señal
7.
PLoS One ; 8(2): e55785, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23409044

RESUMEN

Mitochondrial calcium uptake is present in nearly all vertebrate tissues and is believed to be critical in shaping calcium signaling, regulating ATP synthesis and controlling cell death. Calcium uptake occurs through a channel called the uniporter that resides in the inner mitochondrial membrane. Recently, we used comparative genomics to identify MICU1 and MCU as the key regulatory and putative pore-forming subunits of this channel, respectively. Using bioinformatics, we now report that the human genome encodes two additional paralogs of MICU1, which we call MICU2 and MICU3, each of which likely arose by gene duplication and exhibits distinct patterns of organ expression. We demonstrate that MICU1 and MICU2 are expressed in HeLa and HEK293T cells, and provide multiple lines of biochemical evidence that MCU, MICU1 and MICU2 reside within a complex and cross-stabilize each other's protein expression in a cell-type dependent manner. Using in vivo RNAi technology to silence MICU1, MICU2 or both proteins in mouse liver, we observe an additive impairment in calcium handling without adversely impacting mitochondrial respiration or membrane potential. The results identify MICU2 as a new component of the uniporter complex that may contribute to the tissue-specific regulation of this channel.


Asunto(s)
Canales de Calcio/metabolismo , Calcio/metabolismo , Mitocondrias/metabolismo , Complejos Multiproteicos/metabolismo , Secuencia de Aminoácidos , Animales , Canales de Calcio/química , Canales de Calcio/genética , Señalización del Calcio , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Respiración de la Célula/genética , Células HEK293 , Células HeLa , Humanos , Hígado/metabolismo , Potencial de la Membrana Mitocondrial/genética , Ratones , Mitocondrias/genética , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Familia de Multigenes , Unión Proteica , Estabilidad Proteica , Transporte de Proteínas , Interferencia de ARN , Alineación de Secuencia
8.
PLoS One ; 4(5): e5629, 2009 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-19462005

RESUMEN

BACKGROUND: Antibiotic exposure rapidly selects for more resistant bacterial strains, and both a drug's chemical structure and a bacterium's cellular network affect the types of mutations acquired. METHODOLOGY/PRINCIPAL FINDINGS: To better characterize the genetic determinants of antibiotic susceptibility, we exposed a transposon-mutagenized library of Escherichia coli to each of 17 antibiotics that encompass a wide range of drug classes and mechanisms of action. Propagating the library for multiple generations with drug concentrations that moderately inhibited the growth of the isogenic parental strain caused the abundance of strains with even minor fitness advantages or disadvantages to change measurably and reproducibly. Using a microarray-based genetic footprinting strategy, we then determined the quantitative contribution of each gene to E. coli's intrinsic antibiotic susceptibility. We found both loci whose removal increased general antibiotic tolerance as well as pathways whose down-regulation increased tolerance to specific drugs and drug classes. The beneficial mutations identified span multiple pathways, and we identified pairs of mutations that individually provide only minor decreases in antibiotic susceptibility but that combine to provide higher tolerance. CONCLUSIONS/SIGNIFICANCE: Our results illustrate that a wide-range of mutations can modulate the activity of many cellular resistance processes and demonstrate that E. coli has a large mutational target size for increasing antibiotic tolerance. Furthermore, the work suggests that clinical levels of antibiotic resistance might develop through the sequential accumulation of chromosomal mutations of small individual effect.


Asunto(s)
Farmacorresistencia Microbiana/genética , Aerobiosis/efectos de los fármacos , Aminoglicósidos/farmacología , Antibacterianos/clasificación , Antibacterianos/farmacología , Elementos Transponibles de ADN/genética , Transporte de Electrón/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Escherichia coli/enzimología , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Flagelos/efectos de los fármacos , Flagelos/metabolismo , Ácido Fólico/biosíntesis , Genes Bacterianos , Pruebas de Sensibilidad Microbiana , Mutagénesis Insercional/efectos de los fármacos , Mutación/genética , Racemasas y Epimerasas/metabolismo , Reproducibilidad de los Resultados , Selección Genética , Tetrahidrofolato Deshidrogenasa/metabolismo , beta-Lactamas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA