Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
FASEB J ; 32(3): 1207-1221, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29097501

RESUMEN

Microtubules have long been implicated to play an integral role in metastatic disease, for which a critical step is the local invasion of tumor cells into the 3-dimensional (3D) collagen-rich stromal matrix. Here we show that cell migration of human cancer cells uses the dynamic formation of highly branched protrusions that are composed of a microtubule core surrounded by cortical actin, a cytoskeletal organization that is absent in cells on 2-dimensional (2D) substrates. Microtubule plus-end tracking protein End-binding 1 and motor protein dynein subunits light intermediate chain 2 and heavy chain 1, which do not regulate 2D migration, critically modulate 3D migration by affecting RhoA and thus regulate protrusion branching through differential assembly dynamics of microtubules. An important consequence of this observation is that the commonly used cancer drug paclitaxel is 100-fold more effective at blocking migration in a 3D matrix than on a 2D matrix. This work reveals the central role that microtubule dynamics plays in powering cell migration in a more pathologically relevant setting and suggests further testing of therapeutics targeting microtubules to mitigate migration.-Jayatilaka, H., Giri, A., Karl, M., Aifuwa, I., Trenton, N. J., Phillip, J. M., Khatau, S., Wirtz, D. EB1 and cytoplasmic dynein mediate protrusion dynamics for efficient 3-dimensional cell migration.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Movimiento Celular , Extensiones de la Superficie Celular/fisiología , Dineínas Citoplasmáticas/metabolismo , Fibrosarcoma/patología , Proteínas Asociadas a Microtúbulos/metabolismo , Fibrosarcoma/metabolismo , Humanos , Microtúbulos/metabolismo , Microtúbulos/patología , Células Tumorales Cultivadas
2.
Proc Natl Acad Sci U S A ; 111(11): 3949-54, 2014 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-24594603

RESUMEN

Cell migration through 3D extracellular matrices is critical to the normal development of tissues and organs and in disease processes, yet adequate analytical tools to characterize 3D migration are lacking. Here, we quantified the migration patterns of individual fibrosarcoma cells on 2D substrates and in 3D collagen matrices and found that 3D migration does not follow a random walk. Both 2D and 3D migration features a non-Gaussian, exponential mean cell velocity distribution, which we show is primarily a result of cell-to-cell variations. Unlike in the 2D case, 3D cell migration is anisotropic: velocity profiles display different speed and self-correlation processes in different directions, rendering the classical persistent random walk (PRW) model of cell migration inadequate. By incorporating cell heterogeneity and local anisotropy to the PRW model, we predict 3D cell motility over a wide range of matrix densities, which identifies density-independent emerging migratory properties. This analysis also reveals the unexpected robust relation between cell speed and persistence of migration over a wide range of matrix densities.


Asunto(s)
Movimiento Celular/fisiología , Matriz Extracelular , Modelos Biológicos , Actinina/química , Anisotropía , Línea Celular Tumoral , Simulación por Computador , Proteína Sustrato Asociada a CrK/química , Humanos , Procesos Estocásticos , Zixina/química
3.
FASEB J ; 27(10): 4089-99, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23796785

RESUMEN

Arp2/3 is a protein complex that nucleates actin filament assembly in the lamellipodium in adherent cells crawling on planar 2-dimensional (2D) substrates. However, in physiopathological situations, cell migration typically occurs within a 3-dimensional (3D) environment, and little is known about the role of Arp2/3 and associated proteins in 3D cell migration. Using time resolved live-cell imaging and HT1080, a fibrosarcoma cell line commonly used to study cell migration, we find that the Arp2/3 complex and associated proteins N-WASP, WAVE1, cortactin, and Cdc42 regulate 3D cell migration. We report that this regulation is caused by formation of multigeneration dendritic protrusions, which mediate traction forces on the surrounding matrix and effective cell migration. The primary protrusions emanating directly from the cell body and prolonging the nucleus forms independent of Arp2/3 and dependent on focal adhesion proteins FAK, talin, and p130Cas. The Arp2/3 complex, N-WASP, WAVE1, cortactin, and Cdc42 regulate the secondary protrusions branching off from the primary protrusions. In 3D matrices, fibrosarcoma cells as well as migrating breast, pancreatic, and prostate cancer cells do not display lamellipodial structures. This study characterizes the unique topology of protrusions made by cells in a 3D matrix and show that these dendritic protrusions play a critical role in 3D cell motility and matrix deformation. The relative contribution of these proteins to 3D migration is significantly different from their role in 2D migration.


Asunto(s)
Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Movimiento Celular/fisiología , Extensiones de la Superficie Celular/fisiología , Fibroblastos/citología , Fibroblastos/fisiología , Regulación Neoplásica de la Expresión Génica/fisiología , Complejo 2-3 Proteico Relacionado con la Actina/genética , Línea Celular Tumoral , Humanos , ARN Interferente Pequeño
4.
Nat Protoc ; 10(3): 517-27, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25719270

RESUMEN

Cell migration through 3D extracellular matrices (ECMs) is crucial to the normal development of tissues and organs and in disease processes, yet adequate analytical tools to characterize 3D migration are lacking. The motility of eukaryotic cells on 2D substrates in the absence of gradients has long been described using persistent random walks (PRWs). Recent work shows that 3D migration is anisotropic and features an exponential mean cell velocity distribution, rendering the PRW model invalid. Here we present a protocol for the analysis of 3D cell motility using the anisotropic PRW model. The software, which is implemented in MATLAB, enables statistical profiling of experimentally observed 2D and 3D cell trajectories, and it extracts the persistence and speed of cells along primary and nonprimary directions and an anisotropic index of migration. Basic computer skills and experience with MATLAB software are recommended for successful use of the protocol. This protocol is highly automated and fast, taking <30 min to analyze trajectory data per biological condition.


Asunto(s)
Movimiento Celular/fisiología , Microambiente Celular/fisiología , Imagenología Tridimensional/métodos , Modelos Biológicos , Anisotropía , Procesos Estocásticos
5.
Oncotarget ; 6(31): 30516-31, 2015 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-26483365

RESUMEN

Cells induced into senescence exhibit a marked increase in the secretion of pro-inflammatory cytokines termed senescence-associated secretory phenotype (SASP). Here we report that SASP from senescent stromal fibroblasts promote spontaneous morphological changes accompanied by an aggressive migratory behavior in originally non-motile human breast cancer cells. This phenotypic switch is coordinated, in space and time, by a dramatic reorganization of the actin and microtubule filament networks, a discrete polarization of EB1 comets, and an unconventional front-to-back inversion of nucleus-MTOC polarity. SASP-induced morphological/migratory changes are critically dependent on microtubule integrity and dynamics, and are coordinated by the inhibition of RhoA and cell contractility. RhoA/ROCK inhibition reduces focal adhesions and traction forces, while promoting a novel gliding mode of migration.


Asunto(s)
Neoplasias de la Mama/enzimología , Movimiento Celular , Senescencia Celular , Fibroblastos/metabolismo , Miosinas/metabolismo , Comunicación Paracrina , Quinasas Asociadas a rho/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Actinas/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Movimiento Celular/efectos de los fármacos , Polaridad Celular , Forma de la Célula , Femenino , Adhesiones Focales/enzimología , Humanos , Células MCF-7 , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/enzimología , Mutación , Fenotipo , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal , Factores de Tiempo , Transfección , Quinasas Asociadas a rho/antagonistas & inhibidores , Proteína de Unión al GTP rhoA/antagonistas & inhibidores , Proteína de Unión al GTP rhoA/genética
6.
Nat Commun ; 3: 719, 2012 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-22395610

RESUMEN

Spontaneous molecular oscillations are ubiquitous in biology. But to our knowledge, periodic cell migratory patterns have not been observed. Here we report the highly regular, periodic migration of cells along rectilinear tracks generated inside three-dimensional matrices, with each excursion encompassing several cell lengths, a phenotype that does not occur on conventional substrates. Short hairpin RNA depletion shows that these one-dimensional oscillations are uniquely controlled by zyxin and binding partners α-actinin and p130Cas, but not vasodilator-stimulated phosphoprotein and cysteine-rich protein 1. Oscillations are recapitulated for cells migrating along one-dimensional micropatterns, but not on two-dimensional compliant substrates. These results indicate that although two-dimensional motility can be well described by speed and persistence, three-dimensional motility requires two additional parameters, the dimensionality of the cell paths in the matrix and the temporal control of cell movements along these paths. These results also suggest that the zyxin/α-actinin/p130Cas module may ensure that motile cells in a three-dimensional matrix explore the largest space possible in minimum time.


Asunto(s)
Actinina/metabolismo , Movimiento Celular , Proteína Sustrato Asociada a CrK/metabolismo , Zixina/metabolismo , Proteínas Portadoras/metabolismo , Moléculas de Adhesión Celular/metabolismo , Línea Celular Tumoral , Adhesiones Focales/metabolismo , Humanos , Proteínas con Dominio LIM/metabolismo , Proteínas de Microfilamentos/metabolismo , Fosfoproteínas/metabolismo , Interferencia de ARN , ARN Interferente Pequeño
7.
Sci Rep ; 2: 488, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22761994

RESUMEN

Cells often migrate in vivo in an extracellular matrix that is intrinsically three-dimensional (3D) and the role of actin filament architecture in 3D cell migration is less well understood. Here we show that, while recently identified linkers of nucleoskeleton to cytoskeleton (LINC) complexes play a minimal role in conventional 2D migration, they play a critical role in regulating the organization of a subset of actin filament bundles - the perinuclear actin cap - connected to the nucleus through Nesprin2giant and Nesprin3 in cells in 3D collagen I matrix. Actin cap fibers prolong the nucleus and mediate the formation of pseudopodial protrusions, which drive matrix traction and 3D cell migration. Disruption of LINC complexes disorganizes the actin cap, which impairs 3D cell migration. A simple mechanical model explains why LINC complexes and the perinuclear actin cap are essential in 3D migration by providing mechanical support to the formation of pseudopodial protrusions.


Asunto(s)
Movimiento Celular/fisiología , Núcleo Celular/metabolismo , Citoesqueleto/metabolismo , Actinas/metabolismo , Animales , Movimiento Celular/genética , Núcleo Celular/genética , Citoesqueleto/genética , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Ratones , Ratones Noqueados , Proteínas de Microfilamentos/metabolismo , Complejos Multiproteicos/metabolismo , Fenotipo , Interferencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA