Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Cachexia Sarcopenia Muscle ; 14(4): 1721-1736, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37209006

RESUMEN

BACKGROUND: Sepsis-induced intensive care unit-acquired weakness (ICUAW) features profound muscle atrophy and attenuated muscle regeneration related to malfunctioning satellite cells. Transforming growth factor beta (TGF-ß) is involved in both processes. We uncovered an increased expression of the TGF-ß receptor II (TßRII)-inhibitor SPRY domain-containing and SOCS-box protein 1 (SPSB1) in skeletal muscle of septic mice. We hypothesized that SPSB1-mediated inhibition of TßRII signalling impairs myogenic differentiation in response to inflammation. METHODS: We performed gene expression analyses in skeletal muscle of cecal ligation and puncture- (CLP) and sham-operated mice, as well as vastus lateralis of critically ill and control patients. Pro-inflammatory cytokines and specific pathway inhibitors were used to quantitate Spsb1 expression in myocytes. Retroviral expression plasmids were used to investigate the effects of SPSB1 on TGF-ß/TßRII signalling and myogenesis in primary and immortalized myoblasts and differentiated myotubes. For mechanistical analyses we used coimmunoprecipitation, ubiquitination, protein half-life, and protein synthesis assays. Differentiation and fusion indices were determined by immunocytochemistry, and differentiation factors were quantified by qRT-PCR and Western blot analyses. RESULTS: SPSB1 expression was increased in skeletal muscle of ICUAW patients and septic mice. Tumour necrosis factor (TNF), interleukin-1ß (IL-1ß), and IL-6 increased the Spsb1 expression in C2C12 myotubes. TNF- and IL-1ß-induced Spsb1 expression was mediated by NF-κB, whereas IL-6 increased the Spsb1 expression via the glycoprotein 130/JAK2/STAT3 pathway. All cytokines reduced myogenic differentiation. SPSB1 avidly interacted with TßRII, resulting in TßRII ubiquitination and destabilization. SPSB1 impaired TßRII-Akt-Myogenin signalling and diminished protein synthesis in myocytes. Overexpression of SPSB1 decreased the expression of early (Myog, Mymk, Mymx) and late (Myh1, 3, 7) differentiation-markers. As a result, myoblast fusion and myogenic differentiation were impaired. These effects were mediated by the SPRY- and SOCS-box domains of SPSB1. Co-expression of SPSB1 with Akt or Myogenin reversed the inhibitory effects of SPSB1 on protein synthesis and myogenic differentiation. Downregulation of Spsb1 by AAV9-mediated shRNA attenuated muscle weight loss and atrophy gene expression in skeletal muscle of septic mice. CONCLUSIONS: Inflammatory cytokines via their respective signalling pathways cause an increase in SPSB1 expression in myocytes and attenuate myogenic differentiation. SPSB1-mediated inhibition of TßRII-Akt-Myogenin signalling and protein synthesis contributes to a disturbed myocyte homeostasis and myogenic differentiation that occurs during inflammation.


Asunto(s)
Interleucina-6 , Proteínas Proto-Oncogénicas c-akt , Animales , Ratones , Citocinas , Inflamación , Desarrollo de Músculos , Músculo Esquelético/metabolismo , Miogenina/genética , Factor de Crecimiento Transformador beta/metabolismo , Factor de Necrosis Tumoral alfa
2.
Sci Rep ; 6: 31649, 2016 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-27535180

RESUMEN

The ratio of ω-6 to ω-3 polyunsaturated fatty acids (PUFAs) appears to be critical in the regulation of various pathophysiological processes and to maintain cellular homeostasis. While a high proportion of dietary intake of ω-6 PUFAs is associated with various inflammatory disorders, higher intake of ω-3 PUFAs is known to offer protection. It is now well established that beneficial effects of ω-3 PUFAs are mediated in part by their oxygenated metabolites mainly via the lipoxygenase (LOX) and cyclooxygenase (COX) pathways. However, the down-stream signaling pathways that are involved in these anti-inflammatory effects of ω-3 PUFAs have not been elucidated. The present study evaluates the effects of 15-LOX metabolites of α-linolenic acid (ALA, ω-3 PUFA) on lipopolysaccharide (LPS) induced inflammation in RAW 264.7 cells and peritoneal macrophages. Further, the effect of these metabolites on the survival of BALB/c mice in LPS mediated septic shock and also polymicrobial sepsis in Cecal Ligation and Puncture (CLP) mouse model was studied. These studies reveal the anti-inflammatory effects of 13-(S)-hydroperoxyoctadecatrienoic acid [13-(S)-HPOTrE] and 13-(S)-hydroxyoctadecatrienoic acid [13-(S)-HOTrE] by inactivating NLRP3 inflammasome complex through the PPAR-γ pathway. Additionally, both metabolites also deactivated autophagy and induced apoptosis. In mediating all these effects 13-(S)-HPOTrE was more potent than 13-(S)-HOTrE.


Asunto(s)
Araquidonato 15-Lipooxigenasa/metabolismo , Inflamasomas/metabolismo , Macrófagos Peritoneales/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Choque Séptico/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Ácido alfa-Linolénico/farmacología , Animales , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Lipopolisacáridos/toxicidad , Macrófagos Peritoneales/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Células RAW 264.7 , Choque Séptico/inducido químicamente , Choque Séptico/metabolismo , Choque Séptico/patología , Ácido alfa-Linolénico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA