Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Med Genet ; 61(5): 411-419, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38290824

RESUMEN

BACKGROUND: Cutaneous epidermal nevi are genotypically diverse mosaic disorders. Pathogenic hotspot variants in HRAS, KRAS, and less frequently, NRAS and BRAF may cause isolated keratinocytic epidermal nevi and sebaceous nevi or several different syndromes when associated with extracutaneous anomalies. Therefore, some authors suggest the concept of mosaic RASopathies to group these different disorders. METHODS: In this paper, we describe three new cases of syndromic epidermal nevi caused by mosaic HRAS variants: one associating an extensive keratinocytic epidermal nevus with hypomastia, another with extensive mucosal involvement and a third combining a small sebaceous nevus with seizures and intellectual deficiency. Moreover, we performed extensive literature of all cases of syndromic epidermal nevi and related disorders with confirmed pathogenic postzygotic variants in HRAS, KRAS, NRAS or BRAF. RESULTS: Most patients presented with bone, ophthalmological or neurological anomalies. Rhabdomyosarcoma, urothelial cell carcinoma and pubertas praecox are also repeatedly reported. KRAS pathogenic variants are involved in 50% of the cases, especially in sebaceous nevi, oculoectodermal syndrome and encephalocraniocutaneous lipomatosis. They are frequently associated with eye and brain anomalies. Pathogenic variants in HRAS are rather present in syndromic keratinocytic epidermal nevi and phacomatosis pigmentokeratotica. CONCLUSION: This review delineates genotype/phenotype correlations of syndromic epidermal nevi with somatic RAS and BRAF pathogenic variants and may help improve their follow-up.


Asunto(s)
Nevo , Enfermedades de la Piel , Neoplasias Cutáneas , Humanos , Proteínas Proto-Oncogénicas B-raf , Proteínas Proto-Oncogénicas p21(ras)/genética , Nevo/genética , Nevo/patología , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología
2.
Am J Med Genet A ; 191(1): 52-63, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36196855

RESUMEN

A small but growing body of scientific literature is emerging about clinical findings in patients with 19p13.3 microdeletion or duplication. Recently, a proximal 19p13.3 microduplication syndrome was described, associated with growth delay, microcephaly, psychomotor delay and dysmorphic features. The aim of our study was to better characterize the syndrome associated with duplications in the proximal 19p13.3 region (prox 19p13.3 dup), and to propose a comprehensive analysis of the underlying genomic mechanism. We report the largest cohort of patients with prox 19p13.3 dup through a collaborative study. We collected 24 new patients with terminal or interstitial 19p13.3 duplication characterized by array-based Comparative Genomic Hybridization (aCGH). We performed mapping, phenotype-genotype correlations analysis, critical region delineation and explored three-dimensional chromatin interactions by analyzing Topologically Associating Domains (TADs). We define a new 377 kb critical region (CR 1) in chr19: 3,116,922-3,494,377, GRCh37, different from the previously described critical region (CR 2). The new 377 kb CR 1 includes a TAD boundary and two enhancers whose common target is PIAS4. We hypothesize that duplications of CR 1 are responsible for tridimensional structural abnormalities by TAD disruption and misregulation of genes essentials for the control of head circumference during development, by breaking down the interactions between enhancers and the corresponding targeted gene.


Asunto(s)
Anomalías Múltiples , Microcefalia , Humanos , Hibridación Genómica Comparativa , Anomalías Múltiples/genética , Microcefalia/genética , Síndrome , Estudios de Asociación Genética
3.
Neuropediatrics ; 54(6): 422-425, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36577449

RESUMEN

To describe a new phenotype and the diagnostic workup of a vitamin-B6-dependent epilepsy due to pyridoxal 5'-phosphate-binding protein (PLPBP) deficiency in an infant with early-onset epilepsy at the age of 5 years 6 months. Following immediate and impressive clinical response to treatment with pyridoxine, metabolic screening for vitamin-B6-dependent epilepsies and targeted next-generation sequencing (NGS)-based gene panel analysis were performed. Potentially pathogenic variants were confirmed by Sanger sequencing in the patient, and variants were analyzed in both parents to confirm biallelic inheritance. The clinical phenotype and course of disease were compared to the 44 cases reported in the literature, harboring variants in pyridoxal phosphate homeostasis protein (PLPHP) and with cases of vitamin-B6-dependent epilepsy due to other known causative genes. Levels of alpha-aminoadipic semialdehyde in urine and amino acids were normal. Two inherited pathogenic variations in PLPHP were found in compound heterozygosity, including one novel deletion. We here describe a previously unreported individual harboring biallelic pathogenic PLPHP variants presenting with paroxysmal eye-head movements followed by epileptic spasms and an almost normal interictal electroencephalogram, thus expanding the clinical spectrum of PLPBP deficiency. This warrants consideration of vitamin-B6-dependent epilepsies in patients with early-onset epilepsy, including epileptic spasms, and eye movement disorders also beyond the neonatal period even when metabolic screening for vitamin-B6-dependent epilepsies is negative. PLPHP should be included systematically in NGS epilepsy gene panels.


Asunto(s)
Epilepsia , Espasmos Infantiles , Recién Nacido , Humanos , Lactante , Preescolar , Espasmos Infantiles/diagnóstico , Espasmos Infantiles/genética , Movimientos de la Cabeza , Epilepsia/diagnóstico , Epilepsia/tratamiento farmacológico , Epilepsia/etiología , Vitamina B 6/uso terapéutico , Piridoxina/uso terapéutico , Espasmo/complicaciones , Espasmo/tratamiento farmacológico , Vitaminas/uso terapéutico
4.
Fetal Diagn Ther ; 50(2): 92-97, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37062278

RESUMEN

INTRODUCTION: Gómez-López-Hernández syndrome (GLHS), also known as cerebello-trigeminal-dermal dysplasia, is an extremely rare neurocutaneous disease, classically described by the triad of rhombencephalosynapsis (RES), bilateral focal alopecia, and trigeminal anesthesia. The clinical and radiographic spectrum of GLHS is now known to be broader, including craniofacial and supratentorial anomalies, as well as neurodevelopmental issues. CASE PRESENTATION: Here, we present a case of antenatally diagnosed GLHS with RES, hydrocephaly, and craniofacial anomalies identified on ultrasound (low-set ears with posterior rotation, hypertelorism, midface hypoplasia, micrognathia, and anteverted nares) which were confirmed by autopsy after termination of pregnancy at 23 weeks of gestation. DISCUSSION: As no known genetic causes have been identified and the classical triad is not applicable to prenatal imaging, prenatal diagnosis of GLHS is based on neuroimaging and the identification of supporting features. In presence of an RES associated with craniofacial abnormalities in prenatal (brachycephaly, turricephaly, low-set ears, midface retrusion, micrognathia), GLHS should be considered as "possible" according to postnatal criteria.


Asunto(s)
Anomalías Craneofaciales , Micrognatismo , Femenino , Embarazo , Humanos , Micrognatismo/diagnóstico por imagen , Cerebelo , Anomalías Craneofaciales/diagnóstico por imagen , Anomalías Craneofaciales/genética , Alopecia/diagnóstico , Alopecia/genética , Diagnóstico Prenatal
5.
Clin Genet ; 99(5): 650-661, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33415748

RESUMEN

Megalencephaly-CApillary malformation-Polymicrogyria (MCAP) syndrome results from somatic mosaic gain-of-function variants in PIK3CA. Main features are macrocephaly, somatic overgrowth, cutaneous vascular malformations, connective tissue dysplasia, neurodevelopmental delay, and brain anomalies. The objectives of this study were to describe the clinical and radiological features of MCAP, to suggest relevant clinical endpoints applicable in future trials of targeted drug therapy. Based on a French collaboration, we collected clinical features of 33 patients (21 females, 12 males, median age of 9.9 years) with MCAP carrying mosaic PIK3CA pathogenic variants. MRI images were reviewed for 21 patients. The main clinical features reported were macrocephaly at birth (20/31), postnatal macrocephaly (31/32), body/facial asymmetry (21/33), cutaneous capillary malformations (naevus flammeus 28/33, cutis marmorata 17/33). Intellectual disability was present in 15 patients. Among the MRI images reviewed, the neuroimaging findings were megalencephaly (20/21), thickening of corpus callosum (16/21), Chiari malformation (12/21), ventriculomegaly/hydrocephaly (10/21), cerebral asymmetry (6/21) and polymicrogyria (2/21). This study confirms the main known clinical features that defines MCAP syndrome. Taking into account the phenotypic heterogeneity in MCAP patients, in the context of emerging clinical trials, we suggest that patients should be evaluated based on the main neurocognitive expression on each patient.


Asunto(s)
Anomalías Múltiples/diagnóstico por imagen , Anomalías Múltiples/fisiopatología , Ensayos Clínicos como Asunto , Megalencefalia/diagnóstico por imagen , Megalencefalia/fisiopatología , Neuroimagen , Enfermedades Cutáneas Vasculares/diagnóstico por imagen , Enfermedades Cutáneas Vasculares/fisiopatología , Telangiectasia/congénito , Anomalías Múltiples/tratamiento farmacológico , Adolescente , Adulto , Niño , Preescolar , Fosfatidilinositol 3-Quinasa Clase I/genética , Estudios de Cohortes , Femenino , Predicción , Humanos , Imagen por Resonancia Magnética , Masculino , Megalencefalia/tratamiento farmacológico , Enfermedades Cutáneas Vasculares/tratamiento farmacológico , Telangiectasia/diagnóstico por imagen , Telangiectasia/tratamiento farmacológico , Telangiectasia/fisiopatología , Adulto Joven
6.
Am J Med Genet A ; 185(12): 3831-3837, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34296525

RESUMEN

Polydactyly is a hallmark of GLI3 pathogenic variants, with Greig cephalopolysyndactyly syndrome and Pallister-Hall syndrome being the two main associated clinical presentations. Homozygous GLI3 variants are rare instances in the literature, and mendelian dominance is the accepted framework for GLI3-related diseases. Herein, we report three unrelated probands, presenting with polydactyly, and homozygous variants in the GLI3 gene. First, a 10-year-old girl, whose parents were first-degree cousins, presented with bilateral postaxial polydactyly of the hands, developmental delay and multiple malformations. Second, a male newborn, whose parents were first-degree cousins, presented with isolated bilateral postaxial polysyndactyly of the hands and the feet. Third, an adult male, whose parents were first-degree cousins, had bilateral mesoaxial polydactyly of the hands, with severe intellectual disability and multiple malformations. All three probands carried homozygous GLI3 variants. Strikingly, the parents also carried the child's variant, in the heterozygous state, without any clinical sign of GLI3 disease. Given the clinical presentation of our patients, the rarity and predicted high pathogenicity of the variants observed, and the absence of other pathogenic variants, we suggest that these GLI3 homozygous variants are causal. Moreover, the parents were heterozygous for the observed variants, but were clinically unremarkable, suggesting that these variants are hypomorphic alleles.


Asunto(s)
Predisposición Genética a la Enfermedad , Proteínas del Tejido Nervioso/genética , Polidactilia/genética , Proteína Gli3 con Dedos de Zinc/genética , Adulto , Niño , Femenino , Heterocigoto , Homocigoto , Humanos , Recién Nacido , Masculino , Linaje , Polidactilia/patología
7.
Hum Mutat ; 41(1): 222-239, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31502745

RESUMEN

Congenital limb malformations (CLM) comprise many conditions affecting limbs and more than 150 associated genes have been reported. Due to this large heterogeneity, a high proportion of patients remains without a molecular diagnosis. In the last two decades, advances in high throughput sequencing have allowed new methodological strategies in clinical practice. Herein, we report the screening of 52 genes/regulatory sequences by multiplex high-throughput targeted sequencing, in a series of 352 patients affected with various CLM, over a 3-year period of time. Patients underwent a clinical triage by expert geneticists in CLM. A definitive diagnosis was achieved in 35.2% of patients, the yield varying considerably, depending on the phenotype. We identified 112 single nucleotide variants and 26 copy-number variations, of which 52 are novel pathogenic or likely pathogenic variants. In 6% of patients, variants of uncertain significance have been found in good candidate genes. We showed that multiplex targeted high-throughput sequencing works as an efficient and cost-effective tool in clinical practice for molecular diagnosis of congenital limb malformations. Careful clinical evaluation of patients may maximize the yield of CLM panel testing.


Asunto(s)
Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Pruebas Genéticas , Secuenciación de Nucleótidos de Alto Rendimiento , Deformidades Congénitas de las Extremidades/diagnóstico , Deformidades Congénitas de las Extremidades/genética , Alelos , Variaciones en el Número de Copia de ADN , Análisis Mutacional de ADN , Femenino , Estudios de Asociación Genética/métodos , Humanos , Masculino , Mutación , Fenotipo , Radiografía , Reacción en Cadena en Tiempo Real de la Polimerasa
8.
Hum Mutat ; 41(12): 2167-2178, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33131162

RESUMEN

Herein, we report the screening of a large panel of genes in a series of 80 fetuses with congenital heart defects (CHDs) and/or heterotaxy and no cytogenetic anomalies. There were 49 males (61%/39%), with a family history in 28 cases (35%) and no parental consanguinity in 77 cases (96%). All fetuses had complex CHD except one who had heterotaxy and midline anomalies while 52 cases (65%) had heterotaxy in addition to CHD. Altogether, 29 cases (36%) had extracardiac and extra-heterotaxy anomalies. A pathogenic variant was found in 10/80 (12.5%) cases with a higher percentage in the heterotaxy group (8/52 cases, 15%) compared with the non-heterotaxy group (2/28 cases, 7%), and in 3 cases with extracardiac and extra-heterotaxy anomalies (3/29, 10%). The inheritance was recessive in six genes (DNAI1, GDF1, MMP21, MYH6, NEK8, and ZIC3) and dominant in two genes (SHH and TAB2). A homozygous pathogenic variant was found in three cases including only one case with known consanguinity. In conclusion, after removing fetuses with cytogenetic anomalies, next-generation sequencing discovered a causal variant in 12.5% of fetal cases with CHD and/or heterotaxy. Genetic counseling for future pregnancies was greatly improved. Surprisingly, unexpected consanguinity accounts for 20% of cases with identified pathogenic variants.


Asunto(s)
Feto/anomalías , Cardiopatías Congénitas/genética , Síndrome de Heterotaxia/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Análisis Citogenético , Familia , Femenino , Heterocigoto , Homocigoto , Humanos , Masculino , Mutación/genética , Linaje
9.
Am J Med Genet A ; 182(3): 446-453, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31876365

RESUMEN

Kabuki syndrome (KS, KS1: OMIM 147920 and KS2: OMIM 300867) is caused by pathogenic variations in KMT2D or KDM6A. KS is characterized by multiple congenital anomalies and neurodevelopmental disorders. Growth restriction is frequently reported. Here we aimed to create specific growth charts for individuals with KS1, identify parameters used for size prognosis and investigate the impact of growth hormone therapy on adult height. Growth parameters and parental size were obtained for 95 KS1 individuals (41 females). Growth charts for height, weight, body mass index (BMI) and occipitofrontal circumference were generated in standard deviation values for the first time in KS1. Statural growth of KS1 individuals was compared to parental target size. According to the charts, height, weight, BMI, and occipitofrontal circumference were lower for KS1 individuals than the normative French population. For males and females, the mean growth of KS1 individuals was -2 and -1.8 SD of their parental target size, respectively. Growth hormone therapy did not increase size beyond the predicted size. This study, from the largest cohort available, proposes growth charts for widespread use in the management of KS1, especially for size prognosis and screening of other diseases responsible for growth impairment beyond a calculated specific target size.


Asunto(s)
Anomalías Múltiples/genética , Proteínas de Unión al ADN/genética , Cara/anomalías , Enfermedades Hematológicas/genética , Enfermedades Hematológicas/fisiopatología , Proteínas de Neoplasias/genética , Enfermedades Vestibulares/genética , Enfermedades Vestibulares/fisiopatología , Anomalías Múltiples/diagnóstico , Anomalías Múltiples/fisiopatología , Adolescente , Estatura , Índice de Masa Corporal , Peso Corporal , Niño , Preescolar , Cara/fisiopatología , Femenino , Gráficos de Crecimiento , Enfermedades Hematológicas/diagnóstico , Histona Demetilasas/genética , Humanos , Masculino , Mutación/genética , Enfermedades Vestibulares/diagnóstico
10.
Childs Nerv Syst ; 36(5): 961-965, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32103336

RESUMEN

PURPOSE: Subependymal giant-cell astrocytomas (SEGAs) are low grade intraventricular tumors typically found in patients with tuberous sclerosis complex (TSC). The occurrence of SEGA in non TSC patients is very rare and from a genetic point of view these so-called solitary SEGA are thought to result either from somatic mutations in one of the TSC genes (TSC1 or TSC2) limited to the tumor, or be part of a "forme fruste" of TSC with somatic mosaicism. We report on three new cases of solitary SEGA with germline and somatic mutation analysis. METHODS: We retrospectively analyzed TSC genes in three patients with a solitary SEGA using next-generation sequencing technique. RESULTS: In the three patients, a somatic mutation of TSC1 or TSC2 was found only in the tumor cells: one patient had a TSC1 heterozygote mutation, involving the natural acceptor splicing site of intron 15 (c.1998-1G > A (p.?). Two patients had a TSC2 mutation located in the canonical splicing donor site of intron 5 (c.599 + 1G > A) in 70% of the alleles in one patient and in exon 9: c.949_955dup7 (p.V319DfxX21) in 25 of the alleles in the second patient. No other TSC mutations were found in patient's blood or tumor and those identified mutations were absent in blood DNA from parents and siblings. CONCLUSION: We therefore conclude that solitary SEGA can occur with a TSC1 or TSC2 mutation limited to the tumor in patients without TSC.


Asunto(s)
Astrocitoma , Astrocitoma/diagnóstico por imagen , Astrocitoma/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Mutación , Estudios Retrospectivos , Tecnología , Proteína 1 del Complejo de la Esclerosis Tuberosa/genética , Proteína 2 del Complejo de la Esclerosis Tuberosa/genética
11.
Hum Mutat ; 40(10): 1690-1699, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31033087

RESUMEN

Ataxia-telangiectasia-like disorder (ATLD) is a rare genomic instability syndrome caused by biallelic variants of MRE11 (meiotic recombination 11) characterized by progressive cerebellar ataxia and typical karyotype abnormalities. These symptoms are common to those of ataxia-telangiectasia, which is consistent with the key role of MRE11 in ataxia-telangiectasia mutated (ATM) activation after DNA double-strand breaks. Three unrelated French patients were referred with ataxia. Only one had typical karyotype abnormalities. Unreported biallelic MRE11 variants were found in these three cases. Interestingly, one variant (c.424G>A) was present in two cases and haplotype analysis strongly suggested a French founder variant. Variants c.544G>A and c.314+4_314+7del lead to splice defects. The level of MRE11 in lymphoblastoid cell lines was consistently and dramatically reduced. Functional consequences were evaluated on activation of the ATM pathway via phosphorylation of ATM targets (KAP1 and CHK2), but no consistent defect was observed. However, an S-phase checkpoint activation defect after camptothecin was observed in these patients with ATLD. In conclusion, we report the first three French ATLD patients and a French founder variant, and propose an S-phase checkpoint activation study to evaluate the pathogenicity of MRE11 variants.


Asunto(s)
Ataxia Telangiectasia/diagnóstico , Ataxia Telangiectasia/etiología , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Línea Celular Tumoral , Niño , Susceptibilidad a Enfermedades , Femenino , Perfilación de la Expresión Génica , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Haplotipos , Humanos , Lactante , Proteína Homóloga de MRE11/genética , Proteína Homóloga de MRE11/metabolismo , Imagen por Resonancia Magnética , Mutación , Fenotipo , Empalme del ARN , Puntos de Control de la Fase S del Ciclo Celular/genética , Transducción de Señal , Transcriptoma
13.
Brain ; 141(3): 698-712, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29365063

RESUMEN

Polymicrogyria is a malformation of cortical development. The aetiology of polymicrogyria remains poorly understood. Using whole-exome sequencing we found de novo heterozygous missense GRIN1 mutations in 2 of 57 parent-offspring trios with polymicrogyria. We found nine further de novo missense GRIN1 mutations in additional cortical malformation patients. Shared features in the patients were extensive bilateral polymicrogyria associated with severe developmental delay, postnatal microcephaly, cortical visual impairment and intractable epilepsy. GRIN1 encodes GluN1, the essential subunit of the N-methyl-d-aspartate receptor. The polymicrogyria-associated GRIN1 mutations tended to cluster in the S2 region (part of the ligand-binding domain of GluN1) or the adjacent M3 helix. These regions are rarely mutated in the normal population or in GRIN1 patients without polymicrogyria. Using two-electrode and whole-cell voltage-clamp analysis, we showed that the polymicrogyria-associated GRIN1 mutations significantly alter the in vitro activity of the receptor. Three of the mutations increased agonist potency while one reduced proton inhibition of the receptor. These results are striking because previous GRIN1 mutations have generally caused loss of function, and because N-methyl-d-aspartate receptor agonists have been used for many years to generate animal models of polymicrogyria. Overall, our results expand the phenotypic spectrum associated with GRIN1 mutations and highlight the important role of N-methyl-d-aspartate receptor signalling in the pathogenesis of polymicrogyria.


Asunto(s)
Mutación/genética , Proteínas del Tejido Nervioso/genética , Polimicrogiria/genética , Receptores de N-Metil-D-Aspartato/genética , Animales , Niño , Preescolar , Análisis Mutacional de ADN , Agonistas de Aminoácidos Excitadores/farmacología , Salud de la Familia , Femenino , Ácido Glutámico/farmacología , Glicina/metabolismo , Glicina/farmacología , Células HEK293 , Humanos , Lactante , Imagen por Resonancia Magnética , Masculino , Potenciales de la Membrana/genética , Modelos Moleculares , Mutagénesis/genética , N-Metilaspartato/farmacología , Técnicas de Placa-Clamp , Polimicrogiria/diagnóstico por imagen , Ratas , Transfección
14.
Hum Mutat ; 39(6): 790-805, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29637653

RESUMEN

Simpson-Golabi-Behmel syndrome (SGBS) is an X-linked multiple congenital anomalies and overgrowth syndrome caused by a defect in the glypican-3 gene (GPC3). Until now, GPC3 mutations have been reported in isolated cases or small series and the global genotypic spectrum of these mutations has never been delineated. In this study, we review the 57 previously described GPC3 mutations and significantly expand this mutational spectrum with the description of 29 novel mutations. Compiling our data and those of the literature, we provide an overview of 86 distinct GPC3 mutations identified in 120 unrelated families, ranging from single nucleotide variations to complex genomic rearrangements and dispersed throughout the entire coding region of GPC3. The vast majority of them are deletions or truncating mutations (frameshift, nonsense mutations) predicted to result in a loss-of-function. Missense mutations are rare and the two which were functionally characterized, impaired GPC3 function by preventing GPC3 cleavage and cell surface addressing respectively. This report by describing for the first time the wide mutational spectrum of GPC3 could help clinicians and geneticists in interpreting GPC3 variants identified incidentally by high-throughput sequencing technologies and also reinforces the need for functional validation of non-truncating mutations (missense, in frame mutations, duplications).


Asunto(s)
Arritmias Cardíacas/genética , Genes Ligados a X/genética , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Gigantismo/genética , Glipicanos/genética , Cardiopatías Congénitas/genética , Discapacidad Intelectual/genética , Arritmias Cardíacas/patología , Codón sin Sentido/genética , Femenino , Mutación del Sistema de Lectura/genética , Enfermedades Genéticas Ligadas al Cromosoma X/patología , Gigantismo/patología , Cardiopatías Congénitas/patología , Humanos , Discapacidad Intelectual/patología , Masculino , Linaje , Fenotipo
15.
Am J Hum Genet ; 97(4): 616-20, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26365340

RESUMEN

Arthrogryposis multiplex congenita (AMC) is characterized by the presence of multiple joint contractures resulting from reduced or absent fetal movement. Here, we report two unrelated families affected by lethal AMC. By genetic mapping and whole-exome sequencing in a multiplex family, a heterozygous truncating MAGEL2 mutation leading to frameshift and a premature stop codon (c.1996delC, p.Gln666Serfs∗36) and inherited from the father was identified in the probands. In another family, a distinct heterozygous truncating mutation leading to frameshift (c.2118delT, p.Leu708Trpfs∗7) and occurring de novo on the paternal allele of MAGEL2 was identified in the affected individual. In both families, RNA analysis identified the mutated paternal MAGEL2 transcripts only in affected individuals. MAGEL2 is one of the paternally expressed genes within the Prader-Willi syndrome (PWS) locus. PWS is associated with, to varying extents, reduced fetal mobility, severe infantile hypotonia, childhood-onset obesity, hypogonadism, and intellectual disability. MAGEL2 mutations have been recently reported in affected individuals with features resembling PWS and called Schaaf-Yang syndrome. Here, we show that paternal MAGEL2 mutations are also responsible for lethal AMC, recapitulating the clinical spectrum of PWS and suggesting that MAGEL2 is a PWS-determining gene.


Asunto(s)
Artrogriposis/genética , Cromosomas Humanos Par 15/genética , Feto/metabolismo , Mutación/genética , Síndrome de Prader-Willi/genética , Proteínas/genética , Estudios de Casos y Controles , Femenino , Feto/patología , Perfilación de la Expresión Génica , Impresión Genómica , Humanos , Recién Nacido , Masculino , Linaje , Análisis de Secuencia de ADN
16.
Genet Med ; 20(10): 1236-1245, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29323665

RESUMEN

PURPOSE: We delineate the clinical spectrum and describe the histology in arterial tortuosity syndrome (ATS), a rare connective tissue disorder characterized by tortuosity of the large and medium-sized arteries, caused by mutations in SLC2A10. METHODS: We retrospectively characterized 40 novel ATS families (50 patients) and reviewed the 52 previously reported patients. We performed histology and electron microscopy (EM) on skin and vascular biopsies and evaluated TGF-ß signaling with immunohistochemistry for pSMAD2 and CTGF. RESULTS: Stenoses, tortuosity, and aneurysm formation are widespread occurrences. Severe but rare vascular complications include early and aggressive aortic root aneurysms, neonatal intracranial bleeding, ischemic stroke, and gastric perforation. Thus far, no reports unequivocally document vascular dissections or ruptures. Of note, diaphragmatic hernia and infant respiratory distress syndrome (IRDS) are frequently observed. Skin and vascular biopsies show fragmented elastic fibers (EF) and increased collagen deposition. EM of skin EF shows a fragmented elastin core and a peripheral mantle of microfibrils of random directionality. Skin and end-stage diseased vascular tissue do not indicate increased TGF-ß signaling. CONCLUSION: Our findings warrant attention for IRDS and diaphragmatic hernia, close monitoring of the aortic root early in life, and extensive vascular imaging afterwards. EM on skin biopsies shows disease-specific abnormalities.


Asunto(s)
Arterias/anomalías , Proteínas Facilitadoras del Transporte de la Glucosa/genética , Hernia Diafragmática/genética , Inestabilidad de la Articulación/genética , Síndrome de Dificultad Respiratoria del Recién Nacido/genética , Enfermedades Cutáneas Genéticas/genética , Malformaciones Vasculares/genética , Adolescente , Adulto , Aorta/diagnóstico por imagen , Aorta/fisiopatología , Arterias/diagnóstico por imagen , Arterias/fisiopatología , Biopsia , Niño , Preescolar , Factor de Crecimiento del Tejido Conjuntivo/genética , Femenino , Hernia Diafragmática/fisiopatología , Humanos , Lactante , Inestabilidad de la Articulación/epidemiología , Inestabilidad de la Articulación/fisiopatología , Masculino , Mutación , Linaje , Síndrome de Dificultad Respiratoria del Recién Nacido/fisiopatología , Piel/patología , Enfermedades Cutáneas Genéticas/epidemiología , Enfermedades Cutáneas Genéticas/fisiopatología , Proteína Smad2/genética , Factor de Crecimiento Transformador beta/genética , Malformaciones Vasculares/epidemiología , Malformaciones Vasculares/fisiopatología
17.
J Med Genet ; 54(1): 54-62, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27600704

RESUMEN

BACKGROUND: Kohlschütter-Tönz syndrome (KTZS) is a rare autosomal-recessive disease characterised by epileptic encephalopathy, intellectual disability and amelogenesis imperfecta (AI). It is frequently caused by biallelic mutations in ROGDI. Here, we report on individuals with ROGDI-negative KTZS carrying biallelic SLC13A5 mutations. METHODS: In the present cohort study, nine individuals from four families with the clinical diagnosis of KTZS and absence of ROGDI mutations as well as one patient with unexplained epileptic encephalopathy were investigated by clinical and dental evaluation, parametric linkage analysis (one family), and exome and/or Sanger sequencing. Dental histological investigations were performed on teeth from individuals with SLC13A5-associated and ROGDI-associated KTZS. RESULTS: Biallelic mutations in SLC13A5 were identified in 10 affected individuals. Epileptic encephalopathy usually presents in the neonatal and (less frequently) early infantile period. Yellowish to orange discolouration of both deciduous and permanent teeth, as well as wide interdental spaces and abnormal crown forms are major clinical signs of individuals with biallelic SLC13A5 mutations. Histological dental investigations confirmed the clinical diagnosis of hypoplastic AI. In comparison, the histological evaluation of a molar assessed from an individual with ROGDI-associated KTZS revealed hypocalcified AI. CONCLUSIONS: We conclude that SLC13A5 is the second major gene associated with the clinical diagnosis of KTZS, characterised by neonatal epileptic encephalopathy and hypoplastic AI. Careful clinical and dental delineation provides clues whether ROGDI or SLC13A5 is the causative gene. Hypersensitivity of teeth as well as high caries risk requires individual dental prophylaxis and attentive dental management.


Asunto(s)
Amelogénesis Imperfecta/genética , Demencia/genética , Epilepsia/genética , Predisposición Genética a la Enfermedad/genética , Simportadores/genética , Alelos , Encefalopatías/genética , Estudios de Cohortes , Exoma/genética , Femenino , Ligamiento Genético/genética , Humanos , Masculino , Proteínas de la Membrana/genética , Mutación/genética , Proteínas Nucleares/genética , Linaje , Diente
18.
J Med Genet ; 53(2): 98-110, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26502894

RESUMEN

BACKGROUND: Orodental diseases include several clinically and genetically heterogeneous disorders that can present in isolation or as part of a genetic syndrome. Due to the vast number of genes implicated in these disorders, establishing a molecular diagnosis can be challenging. We aimed to develop a targeted next-generation sequencing (NGS) assay to diagnose mutations and potentially identify novel genes mutated in this group of disorders. METHODS: We designed an NGS gene panel that targets 585 known and candidate genes in orodental disease. We screened a cohort of 101 unrelated patients without a molecular diagnosis referred to the Reference Centre for Oro-Dental Manifestations of Rare Diseases, Strasbourg, France, for a variety of orodental disorders including isolated and syndromic amelogenesis imperfecta (AI), isolated and syndromic selective tooth agenesis (STHAG), isolated and syndromic dentinogenesis imperfecta, isolated dentin dysplasia, otodental dysplasia and primary failure of tooth eruption. RESULTS: We discovered 21 novel pathogenic variants and identified the causative mutation in 39 unrelated patients in known genes (overall diagnostic rate: 39%). Among the largest subcohorts of patients with isolated AI (50 unrelated patients) and isolated STHAG (21 unrelated patients), we had a definitive diagnosis in 14 (27%) and 15 cases (71%), respectively. Surprisingly, COL17A1 mutations accounted for the majority of autosomal-dominant AI cases. CONCLUSIONS: We have developed a novel targeted NGS assay for the efficient molecular diagnosis of a wide variety of orodental diseases. Furthermore, our panel will contribute to better understanding the contribution of these genes to orodental disease. TRIAL REGISTRATION NUMBERS: NCT01746121 and NCT02397824.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Mutación , Anomalías Dentarias/genética , Amelogénesis Imperfecta/genética , Autoantígenos/genética , Deleción Cromosómica , Trastornos de los Cromosomas/genética , Cromosomas Humanos Par 11/genética , Estudios de Cohortes , Coloboma/genética , Displasia de la Dentina/genética , Francia , Pérdida Auditiva Sensorineural/genética , Humanos , Colágenos no Fibrilares/genética , Reproducibilidad de los Resultados , Colágeno Tipo XVII
19.
PLoS Genet ; 10(9): e1004580, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25188300

RESUMEN

SHANK genes code for scaffold proteins located at the post-synaptic density of glutamatergic synapses. In neurons, SHANK2 and SHANK3 have a positive effect on the induction and maturation of dendritic spines, whereas SHANK1 induces the enlargement of spine heads. Mutations in SHANK genes have been associated with autism spectrum disorders (ASD), but their prevalence and clinical relevance remain to be determined. Here, we performed a new screen and a meta-analysis of SHANK copy-number and coding-sequence variants in ASD. Copy-number variants were analyzed in 5,657 patients and 19,163 controls, coding-sequence variants were ascertained in 760 to 2,147 patients and 492 to 1,090 controls (depending on the gene), and, individuals carrying de novo or truncating SHANK mutations underwent an extensive clinical investigation. Copy-number variants and truncating mutations in SHANK genes were present in ∼1% of patients with ASD: mutations in SHANK1 were rare (0.04%) and present in males with normal IQ and autism; mutations in SHANK2 were present in 0.17% of patients with ASD and mild intellectual disability; mutations in SHANK3 were present in 0.69% of patients with ASD and up to 2.12% of the cases with moderate to profound intellectual disability. In summary, mutations of the SHANK genes were detected in the whole spectrum of autism with a gradient of severity in cognitive impairment. Given the rare frequency of SHANK1 and SHANK2 deleterious mutations, the clinical relevance of these genes remains to be ascertained. In contrast, the frequency and the penetrance of SHANK3 mutations in individuals with ASD and intellectual disability-more than 1 in 50-warrant its consideration for mutation screening in clinical practice.


Asunto(s)
Trastornos Generalizados del Desarrollo Infantil/genética , Trastornos del Conocimiento/genética , Mutación/genética , Proteínas del Tejido Nervioso/genética , Estudios de Casos y Controles , Niño , Cognición/fisiología , Variaciones en el Número de Copia de ADN/genética , Femenino , Humanos , Discapacidad Intelectual/genética , Masculino , Neuronas/fisiología , Sinapsis/genética
20.
Hum Mutat ; 37(9): 847-64, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27302555

RESUMEN

Kabuki syndrome (KS) is a rare but recognizable condition that consists of a characteristic face, short stature, various organ malformations, and a variable degree of intellectual disability. Mutations in KMT2D have been identified as the main cause for KS, whereas mutations in KDM6A are a much less frequent cause. Here, we report a mutation screening in a case series of 347 unpublished patients, in which we identified 12 novel KDM6A mutations (KS type 2) and 208 mutations in KMT2D (KS type 1), 132 of them novel. Two of the KDM6A mutations were maternally inherited and nine were shown to be de novo. We give an up-to-date overview of all published mutations for the two KS genes and point out possible mutation hot spots and strategies for molecular genetic testing. We also report the clinical details for 11 patients with KS type 2, summarize the published clinical information, specifically with a focus on the less well-defined X-linked KS type 2, and comment on phenotype-genotype correlations as well as sex-specific phenotypic differences. Finally, we also discuss a possible role of KDM6A in Kabuki-like Turner syndrome and report a mutation screening of KDM6C (UTY) in male KS patients.


Asunto(s)
Anomalías Múltiples/genética , Proteínas de Unión al ADN/genética , Cara/anomalías , Enfermedades Hematológicas/genética , Histona Demetilasas/genética , Mutación , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Enfermedades Vestibulares/genética , Anomalías Múltiples/patología , Cara/patología , Femenino , Genes Ligados a X , Predisposición Genética a la Enfermedad , Enfermedades Hematológicas/patología , Humanos , Masculino , Herencia Materna , Síndrome de Noonan/genética , Análisis de Secuencia de ADN , Enfermedades Vestibulares/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA