Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
J Am Chem Soc ; 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37934048

RESUMEN

Intentional generation, amplification, and discharging of chemical gradients is central to many nano- and micromanipulative technologies. We describe a straightforward strategy to direct chemical gradients inside a solution via local photoelectric surface charging of organic semiconducting thin films. We observed that the irradiation of carbon nitride thin films with ultraviolet light generates local and sustained surface charges in illuminated regions, inducing chemical gradients in adjacent solutions via charge-selective immobilization of surfactants onto the substrate. We studied these gradients using droplet force gradient sensors, complex emulsions with simultaneous and independent responsive modalities to transduce information on transient gradients in temperature, chemistry, and concentration via tilting, morphological reconfiguration, and chemotaxis. Fine control over the interaction between local, photoelectrically patterned, semiconducting carbon nitride thin films and their environment yields a new method to design chemomechanically responsive materials, potentially applicable to micromanipulative technologies including microfluidics, lab-on-a-chip devices, soft robotics, biochemical assays, and the sorting of colloids and cells.

2.
J Am Chem Soc ; 142(49): 20883-20891, 2020 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-33245855

RESUMEN

We present an innovative method for the synthesis of boron carbon nitride thin film materials in a simple furnace setup, using commonly available solid precursors and relatively low temperature compared to previous attempts. The as-prepared structural and optical properties of thin films are tuned via the precursor content, leading to a sp2-conjugated boron nitride-carbon nitride mixed material, instead of the commonly reported boron nitride-graphene phase segregation, with tunable optical properties such as band gap and fluorescence.

3.
Angew Chem Int Ed Engl ; 57(32): 10123-10126, 2018 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-29939454

RESUMEN

Ions transport through confined space with characteristic dimensions comparable to the Debye length has many applications, for example, in water desalination, dialysis, and energy conversion. However, existing 2D/3D smart porous membranes for ions transport and further applications are fragile, thermolabile, and/or difficult to scale up, limiting their practical applicability. Now, polymeric carbon nitride alternatively allows the creation of an ultrathin free-standing carbon nitride membrane (UFSCNM), which can be fabricated by simple CVD polymerization and exhibits excellent nanofluidic ion-transport properties. The surface-charge-governed ion transport also endows such UFSCNMs with the function of converting salinity gradients into electric energy. With advantages of low cost, facile fabrication, and the ease of scale up while supporting high ionic currents, UFSCNM can be considered as an alternative for energy conversion systems and new ionic devices.

4.
ChemSusChem ; : e202400618, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38837891

RESUMEN

Metal-free graphitic carbon nitrides are on the rise as polymer photocatalysts under visible light illumination, taking shares in a range of promising photocatalytic reactions, including water splitting. Their simple synthesis and facile structural modification afford them exceptional tunability, enabling the creation of photocatalysts with distinct properties. While their metal-free nature marks a significant step towards environmental sustainability, the high energy consumption required to produce carbon nitride photocatalysts remains a substantial barrier to their widespread adoption. Furthermore, the process of condensation at approximately 550°C typically results in solid yields of less than 15%, significantly challenging their economic viability. Here, we report on lowering manufacturing conditions of carbon nitride photocatalysts whilst enhancing photocatalytic activity by introducing binaphthyl diamine as a structural mediator. At 450°C in 2 hours, carbon nitride photocatalyst shows a lower bandgap and enables visible light induced hydrogen evolution (194 µmol h-1) comparable to benchmark carbon nitride photocatalysts.

5.
ACS Nano ; 18(3): 2066-2076, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38193893

RESUMEN

Triazine-based graphitic carbon nitride is a semiconductor material constituted of cross-linked triazine units, which differs from widely reported heptazine-based carbon nitrides. Its triazine-based structure gives rise to significantly different physical chemical properties from the latter. However, it is still a great challenge to experimentally synthesize this material. Here, we propose a synthesis strategy via vapor-metal interfacial condensation on a planar copper substrate to realize homogeneous growth of triazine-based graphitic carbon nitride films over large surfaces. The triazine-based motifs are clearly shown in transmission electron microscopy with high in-plane crystallinity. An AB-stacking arrangement of the layers is orientationlly parallel to the substrate surface. Eventually, the as-prepared films show dense electrochemical lithium deposition attributed to homogeneous charge transport within this thin film interphase, making it a promising solution for energy storage.

6.
Adv Sci (Weinh) ; 11(16): e2310196, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38350734

RESUMEN

Developing high-performance carbonaceous anode materials for sodium-ion batteries (SIBs) is still a grand quest for a more sustainable future of energy storage. Introducing sulfur within a carbon framework is one of the most promising attempts toward the development of highly efficient anode materials. Herein, a microporous sulfur-rich carbon anode obtained from a liquid sulfur-containing oligomer is introduced. The sodium storage mechanism shifts from surface-controlled to diffusion-controlled at higher synthesis temperatures. The different storage mechanisms and electrode performances are found to be independent of the bare electrode material's interplanar spacing. Therefore, these differences are attributed to an increased microporosity and a thiophene-rich chemical environment. The combination of these properties enables extending the plateau region to higher potential and achieving reversible overpotential sodium storage. Moreover, in-operando small-angle X-ray scattering (SAXS) reveals reversible electron density variations within the pore structure, in good agreement with the pore-filling sodium storage mechanism occurring in hard carbons (HCs). Eventually, the depicted framework will enable the design of high-performance anode materials for sodium-ion batteries with competitive energy density.

7.
J Mater Chem A Mater ; 11(3): 1439-1446, 2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36761436

RESUMEN

Sustainable, high-performance carbonaceous anode materials are highly required to bring sodium-ion batteries to a more competitive level. Here, we exploit our expertise to control the deposition of a nm-sized conformal coating of carbon nitride with tunable thickness to improve the electrochemical performance of anode material derived from sodium lignosulfonate. In this way, we significantly enhanced the electrochemical performances of the electrode, such as the first cycle efficiency, rate-capability, and specific capacity. In particular, with a 10 nm homogeneous carbon nitride coating, the specific capacity is extended by more than 30% with respect to the bare carbon material with an extended plateau capacity, which we attribute to a heterojunction effect at the materials' interface. Eventually, the design of (inter)active electrochemical interfaces will be a key step to improve the performance of carbonaceous anodes with a negligible increase in the material weight.

8.
Nat Commun ; 13(1): 2562, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35538083

RESUMEN

We report, for the first time, a chemotactic motion of emulsion droplets that can be controllably and reversibly altered. Our approach is based on using biphasic Janus emulsion droplets, where each phase responds differently to chemically induced interfacial tension gradients. By permanently breaking the symmetry of the droplets' geometry and composition, externally evoked gradients in surfactant concentration or effectiveness induce anisotropic Marangoni-type fluid flows adjacent to each of the two different exposed interfaces. Regulation of the competitive fluid convections then enables a controllable alteration of the speed and the direction of the droplets' chemotactic motion. Our findings provide insight into how compositional anisotropy can affect the chemotactic behavior of purely liquid-based microswimmers. This has implications for the design of smart and adaptive soft microrobots that can autonomously regulate their response to changes in their chemical environment by chemotactically moving towards or away from a certain target, such as a bacterium.


Asunto(s)
Tensoactivos , Anisotropía , Emulsiones , Movimiento (Física) , Tensión Superficial , Tensoactivos/química
9.
Adv Mater ; 34(40): e2206405, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35977414

RESUMEN

Carbon suboxide (C3 O2 ) is a unique molecule able to polymerize spontaneously into highly conjugated light-absorbing structures at temperatures as low as 0 °C. Despite obvious advantages, little is known about the nature and the functional properties of this carbonaceous material. In this work, the aim is to bring "red carbon," a forgotten polymeric semiconductor, back to the community's attention. A solution polymerization process is adapted to simplify the synthesis and control the structure. This allows one to obtain this crystalline covalent material at low temperatures. Both spectroscopic and elemental analyses support the chemical structure represented as conjugated ladder polypyrone ribbons. Density functional theory calculations suggest a crystalline structure of AB stacks of polypyrone ribbons and identify the material as a direct bandgap semiconductor with a medium bandgap that is further confirmed by optical analysis. The material shows promising photocatalytic performance using blue light. Moreover, the simple condensation-aromatization route described here allows the straightforward fabrication of conjugated ladder polymers and can be inspiring for the synthesis of carbonaceous materials at low temperatures in general.

10.
Adv Sci (Weinh) ; 8(17): e2101602, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34218530

RESUMEN

Ternary materials made up only from the lightweight elements boron, carbon, and nitrogen are very attractive due to their tunable properties that can be obtained by changing the relative elemental composition. However, most of the times, the synthesis requires to use up to three different precursor and very high temperatures for the synthesis. Moreover, the low reciprocal solubility of boron nitride and graphene often leads to BN-C composite materials due to phase segregation. Herein, an innovative method is presented to prepare BCN thin films by chemical vapor deposition from a single source precursor, melamine diborate. The deposition occurs homogenously at relatively low temperatures generating very high degree of sp2 conjugation. The as-prepared thin films possess high transparency and refractive index values in the visible range that are of interest for reflective mirrors and lenses. Furthermore, they are wide-bandgap semiconductor with very positive valence band, making these materials very stable against oxidation of interest as protective coating and charge transport layer for solar cells. The simple chemical vapor deposition method that relies on commonly available and low-hazard precursor can open the way for application of BCN thin films in optics, optoelectronics, and beyond.

11.
Natl Sci Rev ; 8(8): nwaa231, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34691706

RESUMEN

Light-driven ion (proton) transport is a crucial process both for photosynthesis of green plants and solar energy harvesting of some archaea. Here, we describe use of a TiO2/C3N4 semiconductor heterojunction nanotube membrane to realize similar light-driven directional ion transport performance to that of biological systems. This heterojunction system can be fabricated by two simple deposition steps. Under unilateral illumination, the TiO2/C3N4 heterojunction nanotube membrane can generate a photocurrent of about 9 µA/cm2, corresponding to a pumping stream of ∼5500 ions per second per nanotube. By changing the position of TiO2 and C3N4, a reverse equivalent ionic current can also be realized. Directional transport of photogenerated electrons and holes results in a transmembrane potential, which is the basis of the light-driven ion transport phenomenon. As a proof of concept, we also show that this system can be used for enhanced osmotic energy generation. The artificial light-driven ion transport system proposed here offers a further step forward on the roadmap for development of ionic photoelectric conversion and integration into other applications, for example water desalination.

12.
Adv Mater ; 32(10): e1908140, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31995254

RESUMEN

Brilliance usually refers to the light reflected by the facets of a gemstone such as diamond due to its high refractive index. Nowadays, high-refractive-index materials find application in many optical and photonic devices and are mostly of inorganic nature. However, these materials are usually obtained by toxic or expensive production processes. Herein, the synthesis of a thin-film organic semiconductor, namely, polymeric carbon nitride, by thermal chemical vapor deposition is presented. Among polymers, this organic material combines the highest intrinsic refractive index reported so far with high transparency in the visible spectrum, even reaching the range of diamond. Eventually, the herein presented deposition of high quality thin films and their optical characteristics open the way for numerous new applications and devices in optics, photonics, and beyond based on organic materials.

13.
Nanoscale ; 11(18): 8978-8983, 2019 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-31017152

RESUMEN

Thanks to a high photoluminescence quantum yield, large charge carrier diffusion, and ease of processing from solution, perovskite materials are becoming increasingly interesting for flexible optoelectronic devices. However, their deposition requires wide range solvents that are incompatible with many other flexible and solution-processable materials, including polymers. Here, we show that methylammonium lead iodide (MAPbI3) films can be directly synthesized on all-polymer microcavities via simple addition of a perfluorinated layer which protects the polymer photonic structure from the perovskite processing solvents. The new processing provides microcavities with a quality factor Q = 155, that is in agreement with calculations and the largest value reported so far for fully solution processed perovskite microcavities. Furthermore, the obtained microcavity shows strong spectral and angular redistribution of the the MAPbI3 photoluminescence spectrum, which shows a 3.5 fold enhanced intensity with respect to the detuned reference. The opportunity to control and modify the emission of a MAPbI3 film via a simple spun-cast polymer structure is of great interest in advanced optoelectronic applications requiring high colour purity or emission directionality.

14.
ACS Omega ; 3(7): 7517-7522, 2018 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-31458907

RESUMEN

We report on the highly sensitive optical and colorimetric detection of perfluorinated compounds in the vapor phase achieved by all-polymer dielectric mirrors. High optical quality and uniformly distributed Bragg reflectors were fabricated by alternating thin films of poly(N-vinylcarbazole) and Hyflon AD polymers as high and low refractive index medium, respectively. A new processing procedure has been developed to compatibilize the deposition of poly(N-vinylcarbazole) with the highly solvophobic Hyflon AD polymer layers to achieve mutual processability between the two polymers and fabricate the devices. As a proof of principle, sensing measurements were performed using the Galden HT55 polymer as a prototype of the perfluorinated compound. The Bragg stacks show a strong chromatic response upon exposure to this compound, clearly detectable as both spectral and intensity variations. Conversely, Bragg mirrors fabricated without fluorinated polymers do not show any detectable response, demonstrating that the Hyflon AD polymer acts as the active and selective medium for sensing perfluorinated species. These results demonstrate that organic dielectric mirrors containing perfluorinated polymers can represent an innovative colorimetric monitoring system for fluorinated compounds, suitable to improve both environmental safety and quality of life.

15.
ACS Appl Mater Interfaces ; 8(46): 31941-31950, 2016 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-27808494

RESUMEN

The lack of sensors for low cost, extensive, and continuous detection of vapor pollutants is a serious concern for health and safety in industrialized urban areas. Colorimetric sensors, such as distributed Bragg reflectors made of polymers, could achieve this task thanks to their low cost and easy signal transduction but are typically affected by low vapor permeability and lack of selectivity without chemical labeling. Here we demonstrate all-polymer Bragg multilayers for label-free selective detection of organic volatile compounds. The system exploits the ability of amorphous poly(p-phenylene oxide), PPO, to uptake large amount of guest molecules and to form cocrystalline phases with distinct optical properties. Bragg stacks embedding PPO active layers show selective colorimetric response to vapors of carbon tetrachloride and aromatic homologues, which can be revealed by the naked eye.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA