RESUMEN
This article provides an overview on the broad topic of biogenic amines (BAs) that are a persistent concern in the context of food quality and safety. They emerge mainly from the decomposition of amino acids in protein-rich food due to enzymes excreted by pathogenic bacteria that infect food under inappropriate storage conditions. While there are food authority regulations on the maximum allowed amounts of, e.g., histamine in fish, sensitive individuals can still suffer from medical conditions triggered by biogenic amines, and mass outbreaks of scombroid poisoning are reported regularly. We review first the classical techniques used for selective BA detection and quantification in analytical laboratories and focus then on sensor-based solutions aiming at on-site BA detection throughout the food chain. There are receptor-free chemosensors for BA detection and a vastly growing range of bio- and biomimetic sensors that employ receptors to enable selective molecular recognition. Regarding the receptors, we address enzymes, antibodies, molecularly imprinted polymers (MIPs), and aptamers as the most recent class of BA receptors. Furthermore, we address the underlying transducer technologies, including optical, electrochemical, mass-sensitive, and thermal-based sensing principles. The review concludes with an assessment on the persistent limitations of BA sensors, a technological forecast, and thoughts on short-term solutions.
Asunto(s)
Aminas Biogénicas , Inocuidad de los Alimentos , Animales , Aminas Biogénicas/análisis , Histamina/análisis , AminoácidosRESUMEN
Understanding microbial adhesion and retention is crucial for controlling many processes, including biofilm formation, antimicrobial therapy as well as cell sorting and cell detection platforms. Cell detachment is inextricably linked to cell adhesion and retention and plays an important part in the mechanisms involved in these processes. Physico-chemical and biological forces play a crucial role in microbial adhesion interactions and altering the medium ionic strength offers a potential means for modulating these interactions. Real-time studies on the effect of ionic strength on microbial adhesion are often limited to short-term bacterial adhesion. Therefore, there is a need, not only for long-term bacterial adhesion studies, but also for similar studies focusing on eukaryotic microbes, such as yeast. Hereby, we monitored, in real-time, S. cerevisiae adhesion on gold and silica as examples of surfaces with different surface charge properties to disclose long-term adhesion, retention and detachment as a function of ionic strength using quartz crystal microbalance with dissipation monitoring. Our results show that short- and long-term cell adhesion levels in terms of mass-loading increase with increasing ionic strength, while cells dispersed in a medium of higher ionic strength experience longer retention and detachment times. The positive correlation between the cell zeta potential and ionic strength suggests that zeta potential plays a role on cell retention and detachment. These trends are similar for measurements on silica and gold, with shorter retention and detachment times for silica due to strong short-range repulsions originating from a high electron-donicity. Furthermore, the results are comparable with measurements in standard yeast culture medium, implying that the overall effect of ionic strength applies for cells in nutrient-rich and nutrient-deficient media.
Asunto(s)
Adhesión Bacteriana , Saccharomyces cerevisiae , Concentración Osmolar , Tecnicas de Microbalanza del Cristal de Cuarzo , Propiedades de SuperficieRESUMEN
We report on a novel biomimetic sensor that allows sensitive and specific detection of Escherichia coli (E. coli) bacteria in a broad concentration range from 102 up to 106â¯CFU/mL in both buffer fluids and relevant food samples (i.e. apple juice). The receptors are surface-imprinted polyurethane layers deposited on stainless-steel chips. Regarding the transducer principle, the sensor measures the increase in thermal resistance between the chip and the liquid due to the presence of bacteria captured on the receptor surface. The low noise level that enables the low detection limit originates from a planar meander element that serves as both a heater and a temperature sensor. Furthermore, the experiments show that the presence of bacteria in a liquid enhances the thermal conductivity of the liquid itself. Reference tests with a set of other representative species of Enterobacteriaceae, closely related to E. coli, indicate a very low cross-sensitivity with a sensor response at or below the noise level.
Asunto(s)
Técnicas Bacteriológicas/métodos , Técnicas Biosensibles/métodos , Escherichia coli/aislamiento & purificación , Microbiología de Alimentos , BiomiméticaRESUMEN
The family Cistaceae (Angiosperm, Malvales) consists of 8 genera and 180 species, with 5 genera native to the Mediterranean area (Cistus, Fumara, Halimium, Helianthemum, and Tuberaria). Traditionally, a number of Cistus species have been used in Mediterranean folk medicine as herbal tea infusions for healing digestive problems and colds, as extracts for the treatment of diseases, and as fragrances. The resin, ladano, secreted by the glandular trichomes of certain Cistus species contains a number of phytochemicals with antioxidant, antibacterial, antifungal, and anticancer properties. Furthermore, total leaf aqueous extracts possess anti-influenza virus activity. All these properties have been attributed to phytochemicals such as terpenoids, including diterpenes, labdane-type diterpenes and clerodanes, phenylpropanoids, including flavonoids and ellagitannins, several groups of alkaloids and other types of secondary metabolites. In the past 20 years, research on Cistus involved chemical, biological and phylogenetic analyses but recent investigations have involved genomic and molecular approaches. Our lab is exploring the biosynthetic machinery that generates terpenoids and phenylpropanoids, with a goal to harness their numerous properties that have applications in the pharmaceutical, chemical and aromatic industries. This review focuses on the systematics, botanical characteristics, geographic distribution, chemical analyses, biological function and biosynthesis of major compounds, as well as genomic analyses and biotechnological approaches of the main Cistus species found in the Mediterranean basin, namely C. albidus, C. creticus, C. crispus, C. parviflorus, C. monspeliensis, C. populifolius, C. salviifolius, C. ladanifer, C. laurifolius, and C. clusii.