RESUMEN
Gene therapy is opening unprecedented opportunities for novel therapeutic approaches. Based on the concept of rescuing function mutations by co-expressing the correct gene to allow biological functions to be restored, it requires the use of viral vectors to ensure the proper delivery of therapeutic genes. In this context, recombinant adeno-associated viruses (rAAV) are the most widely used vectors. Their biomanufacturing process requires the insertion of the therapeutic gene into the rAAV (full capsids). However, a percentage of rAAV that do not contain the desired gene (empty capsids), as well as partly filled capsids, might also be produced, potentially impacting the efficiency of the therapy. Therefore, the determination of the rAAV capsids' full/empty ratio needs to be monitored to ensure consistent product quality and efficacy. Anion-exchange chromatography (AEX) can serve this need. In this contribution, thorough AEX method development, including a mobile phase, a stationary phase and gradient conditions, has highlighted its potential in supporting gene therapy. Taking advantage of the fact that viral capsids follow an "on/off" retention behavior, the application of a step gradient approach to the rAAV serotype 8 (rAAV8) allowed the unprecedented separation of rAAV8 full/empty capsids, with a resolution gain of 3.7 as compared to the resolution obtained with a fully optimized linear gradient. Finally, the developed analytical approach allowed a precise and accurate baseline separation and quantification of full and empty rAAV8 capsids, with the potential to be applied as a high-throughput quality control (QC) method.
Asunto(s)
Cápside , Dependovirus , Dependovirus/genética , Cápside/química , Terapia Genética , Vectores Genéticos/genética , Cromatografía , Aniones/análisisRESUMEN
Chemical cross-linking reactions (XL) are an important strategy for studying protein-protein interactions (PPIs), including low abundant sub-complexes, in structural biology. However, choosing XL reagents and conditions is laborious and mostly limited to analysis of protein assemblies that can be resolved using SDS-PAGE. To overcome these limitations, we develop here a denaturing mass photometry (dMP) method for fast, reliable and user-friendly optimization and monitoring of chemical XL reactions. The dMP is a robust 2-step protocol that ensures 95% of irreversible denaturation within only 5 min. We show that dMP provides accurate mass identification across a broad mass range (30 kDa-5 MDa) along with direct label-free relative quantification of all coexisting XL species (sub-complexes and aggregates). We compare dMP with SDS-PAGE and observe that, unlike the benchmark, dMP is time-efficient (3 min/triplicate), requires significantly less material (20-100×) and affords single molecule sensitivity. To illustrate its utility for routine structural biology applications, we show that dMP affords screening of 20 XL conditions in 1 h, accurately identifying and quantifying all coexisting species. Taken together, we anticipate that dMP will have an impact on ability to structurally characterize more PPIs and macromolecular assemblies, expected final complexes but also sub-complexes that form en route.