RESUMEN
Parkinson's disease (PD) is a neurological disorder with complex interindividual etiology that is becoming increasingly prevalent worldwide. Elevated alpha-synuclein levels can increase risk of PD and may influence epigenetic regulation of PD pathways. Here, we report genome-wide DNA methylation and hydroxymethylation alterations associated with overexpression of two PD-linked alpha-synuclein variants (wild-type and A30P) in LUHMES cells differentiated to dopaminergic neurons. Alpha-synuclein altered DNA methylation at thousands of CpGs and DNA hydroxymethylation at hundreds of CpGs in both genotypes, primarily in locomotor behavior and glutamate signaling pathway genes. In some cases, epigenetic changes were associated with transcription. SMITE network analysis incorporating H3K4me1 ChIP-seq to score DNA methylation and hydroxymethylation changes across promoters, enhancers, and gene bodies confirmed epigenetic and transcriptional deregulation of glutamate signaling modules in both genotypes. Our results identify distinct and shared impacts of alpha-synuclein variants on the epigenome, and associate alpha-synuclein with the epigenetic etiology of PD.
Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Epigénesis Genética , Epigenómica , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Transducción de Señal/genética , Glutamatos/genética , Glutamatos/metabolismoRESUMEN
The development of biological markers of aging has primarily focused on adult samples. Epigenetic clocks are a promising tool for measuring biological age that show impressive accuracy across most tissues and age ranges. In adults, deviations from the DNA methylation (DNAm) age prediction are correlated with several age-related phenotypes, such as mortality and frailty. In children, however, fewer such associations have been made, possibly because DNAm changes are more dynamic in pediatric populations as compared to adults. To address this gap, we aimed to develop a highly accurate, noninvasive, biological measure of age specific to pediatric samples using buccal epithelial cell DNAm. We gathered 1,721 genome-wide DNAm profiles from 11 different cohorts of typically developing individuals aged 0 to 20 y old. Elastic net penalized regression was used to select 94 CpG sites from a training dataset (n = 1,032), with performance assessed in a separate test dataset (n = 689). DNAm at these 94 CpG sites was highly predictive of age in the test cohort (median absolute error = 0.35 y). The Pediatric-Buccal-Epigenetic (PedBE) clock was characterized in additional cohorts, showcasing the accuracy in longitudinal data, the performance in nonbuccal tissues and adult age ranges, and the association with obstetric outcomes. The PedBE tool for measuring biological age in children might help in understanding the environmental and contextual factors that shape the DNA methylome during child development, and how it, in turn, might relate to child health and disease.
Asunto(s)
Epigenómica/métodos , Células Epiteliales/metabolismo , Mucosa Bucal/citología , Adolescente , Adulto , Niño , Preescolar , Estudios de Cohortes , Islas de CpG , Epigénesis Genética , Femenino , Humanos , Lactante , Estudios Longitudinales , Masculino , Mucosa Bucal/metabolismo , Adulto JovenRESUMEN
Attachment is a motivational system promoting felt security to a caregiver resulting in a persistent internal working model of interpersonal behavior. Attachment styles are developed in early social environments and predict future health and development outcomes with potential biological signatures, such as epigenetic modifications like DNA methylation (DNAm). Thus, we hypothesized infant DNAm would associate with toddler attachment styles. An epigenome-wide association study (EWAS) of blood DNAm from 3-month-old infants was regressed onto children's attachment style from the Strange Situation Procedure at 22-months at multiple DNAm Cytosine-phosphate-Guanine (CpG) sites. The 26 identified CpGs associated with proinflammatory immune phenotypes and cognitive development. In post-hoc analyses, only maternal cognitive-growth fostering, encouraging intellectual exploration, contributed. For disorganized children, DNAm-derived cell-type proportions estimated higher monocytes -cells in immune responses hypothesized to increase with early adversity. Collectively, these findings suggested the potential biological embedding of both adverse and advantageous social environments as early as 3-months-old.
Asunto(s)
Metilación de ADN , Monocitos , Humanos , Preescolar , Lactante , Apego a Objetos , Epigénesis GenéticaRESUMEN
BACKGROUND: Epigenomic (e.g., DNA methylation [DNAm]) changes have been hypothesized as intermediate step linking environmental exposures with allergic disease. Associations between individual DNAm at CpGs and allergic diseases have been reported, but their joint predictive capability is unknown. METHODS: Data were obtained from 240 children of the German LISA cohort. DNAm was measured in blood clots at 6 (N = 234) and 10 years (N = 227) using the Illumina EPIC chip. Presence of aeroallergen sensitization was measured in blood at 6, 10, and 15 years. We calculated six methylation risk scores (MRS) for allergy-related phenotypes, like total and specific IgE, asthma, or any allergies, based on available publications and assessed their performances both cross-sectionally (biomarker) and prospectively (predictor of the disease). Dose-response associations between aeroallergen sensitization and MRS were evaluated. RESULTS: All six allergy-related MRS were highly correlated (r > .86), and seven CpGs were included in more than one MRS. Cross-sectionally, we observed an 81% increased risk for aeroallergen sensitization at 6 years with an increased MRS by one standard deviation (best-performing MRS, 95% confidence interval = [43%; 227%]). Significant associations were also seen cross-sectionally at 10 years and prospectively, though the effect of the latter was attenuated when restricted to participants not sensitized at baseline. A clear dose-response relationship with levels of aeroallergen sensitization could be established cross-sectionally, but not prospectively. CONCLUSION: We found good classification and prediction capabilities of calculated allergy-related MRS cross-sectionally, underlining the relevance of altered gene-regulation in allergic diseases and providing insights into potential DNAm biomarkers of aeroallergen sensitization.
Asunto(s)
Cohorte de Nacimiento , Hipersensibilidad , Alérgenos , Biomarcadores , Metilación de ADN , Humanos , Hipersensibilidad/diagnóstico , Hipersensibilidad/epidemiología , Hipersensibilidad/etiología , Factores de RiesgoRESUMEN
MOTIVATION: High-dimensional DNA methylation (DNAm) array coverage, while sparse in the context of the entire DNA methylome, still constitutes a very large number of CpG probes. The ensuing multiple-test corrections affect the statistical power to detect associations, likely contributing to prevalent limited reproducibility. Array probes measuring proximal CpG sites often have correlated levels of DNAm that may not only be biologically meaningful but also imply statistical dependence and redundancy. New methods that account for such correlations between adjacent probes may enable improved specificity, discovery and interpretation of statistical associations in DNAm array data. RESULTS: We developed a method named Co-Methylation with genomic CpG Background (CoMeBack) that estimates DNA co-methylation, defined as proximal CpG probes with correlated DNAm across individuals. CoMeBack outputs co-methylated regions (CMRs), spanning sets of array probes constructed based on all genomic CpG sites, including those not measured on the array, and without any phenotypic variable inputs. This approach can reduce the multiple-test correction burden, while enhancing the discovery and specificity of statistical associations. We constructed and validated CMRs in whole blood, using publicly available Illumina Infinium 450 K array data from over 5000 individuals. These CMRs were enriched for enhancer chromatin states, and binding site motifs for several transcription factors involved in blood physiology. We illustrated how CMR-based epigenome-wide association studies can improve discovery and reduce false positives for associations with chronological age. AVAILABILITY AND IMPLEMENTATION: https://bitbucket.org/flopflip/comeback. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Asunto(s)
Metilación de ADN , Análisis de Datos , Islas de CpG , Epigénesis Genética , Genoma , Humanos , Reproducibilidad de los ResultadosRESUMEN
Adverse childhood experiences (ACEs), or cumulative childhood stress exposures, such as abuse, neglect, and household dysfunction, predict later health problems in both the exposed individuals and their offspring. One potential explanation suggests exposure to early adversity predicts epigenetic modification, especially DNA methylation (DNAm), linked to later health. Stress experienced preconception by mothers may associate with DNAm in the next generation. We hypothesized that fathers' exposure to ACEs also associates with their offspring DNAm, which, to our knowledge, has not been previously explored. An epigenome-wide association study (EWAS) of blood DNAm (n = 45) from 3-month-old infants was regressed onto fathers' retrospective ACEs at multiple Cytosine-phosphate-Guanosine (CpG) sites to discover associations. This accounted for infants' sex, age, ethnicity, cell type proportion, and genetic variability. Higher ACE scores associated with methylation values at eight CpGs. Post-hoc analysis found no contribution of paternal education, income, marital status, and parental postpartum depression, but did with paternal smoking and BMI along with infant sleep latency. These same CpGs also contributed to the association between paternal ACEs and offspring attention problems at 3 years. Collectively, these findings suggested there were biological associations with paternal early life adversity and offspring DNAm in infancy, potentially affecting offspring later childhood outcomes.
Asunto(s)
Experiencias Adversas de la Infancia , Metilación de ADN , Niño , Preescolar , Metilación de ADN/genética , Epigénesis Genética/genética , Padre , Femenino , Humanos , Lactante , Masculino , Estudios RetrospectivosRESUMEN
Student creation of educational materials has the capacity both to enhance learning and to decrease costs. Three successive honors-style classes of undergraduate students in a cancer genetics class worked with a new software system, CuboCube, to create an e-textbook. CuboCube is an open-source learning materials creation system designed to facilitate e-textbook development, with an ultimate goal of improving the social learning experience for students. Equipped with crowdsourcing capabilities, CuboCube provides intuitive tools for nontechnical and technical authors alike to create content together in a structured manner. The process of e-textbook development revealed both strengths and challenges of the approach, which can inform future efforts. Both the CuboCube platform and the Cancer Genetics E-textbook are freely available to the community.
Asunto(s)
Acceso a la Información , Neoplasias/genética , Aprendizaje Social , Programas Informáticos , Estudiantes , Libros de Texto como AsuntoRESUMEN
We examined whether prenatal exposure to two classes of endocrine-disrupting chemicals (EDCs) was associated with infant epigenetic age acceleration (EAA), a DNA methylation biomarker of aging. Participants included 224 maternal-infant pairs from a Canadian pregnancy cohort study. Two bisphenols and 12 phthalate metabolites were measured in maternal second trimester urines. Buccal epithelial cell cheek swabs were collected from 3 month old infants and DNA methylation was profiled using the Infinium MethylationEPIC BeadChip. The Pediatric-Buccal-Epigenetic tool was used to estimate EAA. Sex-stratified robust regressions examined individual chemical associations with EAA, and Bayesian kernel machine regression (BKMR) examined chemical mixture effects. Adjusted robust models showed that in female infants, prenatal exposure to total bisphenol A (BPA) was positively associated with EAA (B = 0.72, 95% CI: 0.21, 1.24), and multiple phthalate metabolites were inversely associated with EAA (Bs from -0.36 to -0.66, 95% CIs from -1.28 to -0.02). BKMR showed that prenatal BPA was the most important chemical in the mixture and was positively associated with EAA in both sexes. No overall chemical mixture effects or male-specific associations were noted. These findings indicate that prenatal EDC exposures are associated with sex-specific deviations in biological aging, which may have lasting implications for child health and development.
RESUMEN
Maternal stress and depression during pregnancy and the first year of the infant's life affect a large percentage of mothers. Maternal stress and depression have been associated with adverse fetal and childhood outcomes as well as differential child DNA methylation (DNAm). However, the biological mechanisms connecting maternal stress and depression to poor health outcomes in children are still largely unknown. Here we aim to determine whether prenatal stress and depression are associated with changes in cord blood mononuclear cell DNAm (CBMC-DNAm) in newborns (n = 119) and whether postnatal stress and depression are associated with changes in peripheral blood mononuclear cell DNAm (PBMC-DNAm) in children of 12 months of age (n = 113) from the Canadian Healthy Infant Longitudinal Development (CHILD) cohort. Stress was measured using the 10-item Perceived Stress Scale (PSS) and depression was measured using the Center for Epidemiologic Studies Depression Questionnaire (CESD). Both stress and depression were measured at 18 weeks and 36 weeks of pregnancy and six months and 12 months postpartum. We conducted epigenome-wide association studies (EWAS) using robust linear regression followed by a sensitivity analysis in which we bias-adjusted for inflation and unmeasured confounding using the bacon and cate methods. To investigate the cumulative effect of maternal stress and depression, we created composite prenatal and postnatal adversity scores. We identified a significant association between prenatal stress and differential CBMC-DNAm at 8 CpG sites and between prenatal depression and differential CBMC-DNAm at 2 CpG sites. Additionally, we identified a significant association between postnatal stress and differential PBMC-DNAm at 8 CpG sites and between postnatal depression and differential PBMC-DNAm at 11 CpG sites. Using our composite scores, we further identified 2 CpG sites significantly associated with prenatal adversity and 7 CpG sites significantly associated with postnatal adversity. Several of the associated genes, including PLAGL1, HYMAI, BRD2, and ERC2 have been implicated in adverse fetal outcomes and neuropsychiatric disorders. This suggested that differential DNAm may play a role in the relationship between maternal mental health and child health.
RESUMEN
Maternal stress and depression during pregnancy and the first year of the infant's life affect a large percentage of mothers. Maternal stress and depression have been associated with adverse fetal and childhood outcomes as well as differential child DNA methylation (DNAm). However, the biological mechanisms connecting maternal stress and depression to poor health outcomes in children are still largely unknown. Here we aim to determine whether prenatal stress and depression are associated with differences in cord blood mononuclear cell DNAm (CBMC-DNAm) in newborns (n = 119) and whether postnatal stress and depression are associated with differences in peripheral blood mononuclear cell DNAm (PBMC-DNAm) in children of 12 months of age (n = 113) from the Canadian Healthy Infant Longitudinal Development (CHILD) cohort. Stress was measured using the 10-item Perceived Stress Scale (PSS) and depression was measured using the 20-item Center for Epidemiologic Studies Depression Questionnaire (CESD). Both stress and depression were measured longitudinally at 18 weeks and 36 weeks of pregnancy and six months and 12 months postpartum. We conducted epigenome-wide association studies (EWAS) using robust linear regression followed by a sensitivity analysis in which we bias-adjusted for inflation and unmeasured confounding using the bacon and cate methods. To quantify the cumulative effect of maternal stress and depression, we created composite prenatal and postnatal adversity scores. We identified a significant association between prenatal stress and differential CBMC-DNAm at 8 CpG sites and between prenatal depression and differential CBMC-DNAm at 2 CpG sites. Additionally, we identified a significant association between postnatal stress and differential PBMC-DNAm at 8 CpG sites and between postnatal depression and differential PBMC-DNAm at 11 CpG sites. Using our composite scores, we further identified 2 CpG sites significantly associated with prenatal adversity and 7 CpG sites significantly associated with postnatal adversity. Several of the associated genes, including PLAGL1, HYMAI, BRD2, and ERC2 have been implicated in adverse fetal outcomes and neuropsychiatric disorders. These data further support the finding that differential DNAm may play a role in the relationship between maternal mental health and child health.
Asunto(s)
Metilación de ADN , Estrés Psicológico , Humanos , Femenino , Embarazo , Lactante , Estrés Psicológico/genética , Adulto , Recién Nacido , Masculino , Efectos Tardíos de la Exposición Prenatal/genética , Depresión/genética , Estudios Longitudinales , Sangre Fetal/metabolismo , Canadá , Complicaciones del Embarazo/genética , Leucocitos Mononucleares/metabolismo , Depresión Posparto/genética , Epigénesis GenéticaRESUMEN
Sex differences in aging manifest in disparities in disease prevalence, physical health, and lifespan, where women tend to have greater longevity relative to men. However, in the Mediterranean Blue Zones of Sardinia (Italy) and Ikaria (Greece) are regions of centenarian abundance, male-female centenarian ratios are approximately one, diverging from the typical trend and making these useful regions in which to study sex differences of the oldest old. Additionally, these regions can be investigated as examples of healthy aging relative to other populations. DNA methylation (DNAm)-based predictors have been developed to assess various health biomarkers, including biological age, Pace of Aging, serum interleukin-6 (IL-6), and telomere length. Epigenetic clocks are biological age predictors whose deviation from chronological age has been indicative of relative health differences between individuals, making these useful tools for interrogating these differences in aging. We assessed sex differences between the Horvath, Hannum, GrimAge, PhenoAge, Skin and Blood, and Pace of Aging predictors from individuals in two Mediterranean Blue Zones and found that men displayed positive epigenetic age acceleration (EAA) compared to women according to all clocks, with significantly greater rates according to GrimAge (ß = 3.55; p = 1.22 × 10-12), Horvath (ß = 1.07; p = 0.00378) and the Pace of Aging (ß = 0.0344; p = 1.77 × 10-08). Other DNAm-based biomarkers findings indicated that men had lower DNAm-predicted serum IL-6 scores (ß = -0.00301, p = 2.84 × 10-12), while women displayed higher DNAm-predicted proportions of regulatory T cells than men from the Blue Zone (p = 0.0150, 95% Confidence Interval [0.00131, 0.0117], Cohen's d = 0.517). All clocks showed better correlations with chronological age in women from the Blue Zones than men, but all clocks showed large mean absolute errors (MAE >30 years) in both sexes, except for PhenoAge (MAE <5 years). Thus, despite their equal survival to older ages in these Mediterranean Blue Zones, men in these regions remain biologically older by most measured DNAm-derived metrics than women, with the exception of the IL-6 score and proportion of regulatory T cells.
RESUMEN
BACKGROUND AND AIMS: There is increasing evidence indicating that air pollution exposure is associated with neuronal damage. Since pregnancy is a critical window of vulnerability, air pollution exposure during this period could have adverse effects on neurodevelopment. This study aims 1) to analyze associations of prenatal exposure to indoor air pollution (particulate matter with diameters ≤10 µm, PM10) and tobacco smoke with neurodevelopment and 2) to determine whether these associations are mediated by deviations of epigenetic gestational age from chronological gestational age (ΔGA). METHODS: Data of 734 children from the South African Drakenstein Child Health Study were analyzed. Prenatal PM10 exposure was measured using devices placed in the families' homes. Maternal smoking during pregnancy was determined by maternal urine cotinine measures. The Bayley Scales of Infant and Toddler Development III (BSID-III) was used to measure cognition, language and motor development and adaptive behavior at two years of age. Linear regression models adjusted for maternal age, gestational age, sex of child, ancestry, birth weight/length, and socioeconomic status were used to explore associations between air pollutants and BSID-III scores. A mediation analysis was conducted to analyze if these associations were mediated by ΔGA using DNA methylation measurements from cord blood. RESULTS: An increase of one interquartile range in natural-log transformed PM10 (lnPM10; 1.58 µg/m3) was significantly associated with lower composite scores in cognition, language, and adaptive behavior sub-scores (composite score ß-estimate [95%-confidence interval]: -0.950 [-1.821, -0.120]). Maternal smoking was significantly associated with lower adaptive behavior scores (-3.386 [-5.632, -1.139]). Associations were not significantly mediated by ΔGA (e.g., for PM10 and cognition, proportion mediated [p-value]: 4% [0.52]). CONCLUSION: We found an association of prenatal exposure to indoor air pollution (PM10) and tobacco smoke on neurodevelopment at two years of age, particularly cognition, language, and adaptive behavior. Further research is needed to understand underlying biological mediators.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Contaminación del Aire , Efectos Tardíos de la Exposición Prenatal , Contaminación por Humo de Tabaco , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Contaminación del Aire Interior/efectos adversos , Contaminación del Aire Interior/análisis , Cohorte de Nacimiento , Cognición , Estudios de Cohortes , Femenino , Humanos , Lactante , Exposición Materna , Material Particulado/análisis , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Efectos Tardíos de la Exposición Prenatal/epidemiología , Sudáfrica , Nicotiana , Contaminación por Humo de Tabaco/efectos adversos , Contaminación por Humo de Tabaco/análisisRESUMEN
Smoking-associated DNA methylation (DNAm) signatures are reproducible among studies of mostly European descent, with mixed evidence if smoking accelerates epigenetic aging and its relationship to longevity. We evaluated smoking-associated DNAm signatures in the Costa Rican Study on Longevity and Healthy Aging (CRELES), including participants from the high longevity region of Nicoya. We measured genome-wide DNAm in leukocytes, tested Epigenetic Age Acceleration (EAA) from five clocks and estimates of telomere length (DNAmTL), and examined effect modification by the high longevity region. 489 participants had a mean (SD) age of 79.4 (10.8) years, and 18% were from Nicoya. Overall, 7.6% reported currently smoking, 35% were former smokers, and 57.4% never smoked. 46 CpGs and five regions (e.g. AHRR, SCARNA6/SNORD39, SNORA20, and F2RL3) were differentially methylated for current smokers. Former smokers had increased Horvath's EAA (1.69-years; 95% CI 0.72, 2.67), Hannum's EAA (0.77-years; 95% CI 0.01, 1.52), GrimAge (2.34-years; 95% CI1.66, 3.02), extrinsic EAA (1.27-years; 95% CI 0.34, 2.21), intrinsic EAA (1.03-years; 95% CI 0.12, 1.94) and shorter DNAmTL (- 0.04-kb; 95% CI - 0.08, - 0.01) relative to non-smokers. There was no evidence of effect modification among residents of Nicoya. Our findings recapitulate previously reported and novel smoking-associated DNAm changes in a Latino cohort.
Asunto(s)
Fumar Cigarrillos , Epigenoma , Aceleración , Adulto , Anciano , Fumar Cigarrillos/efectos adversos , Fumar Cigarrillos/genética , Costa Rica/epidemiología , ADN , Metilación de ADN , Epigénesis Genética , Hispánicos o Latinos , HumanosRESUMEN
OBJECTIVES: Early detection of neurodevelopmental delay is crucial for intervention and treatment strategies. We analysed associations between newborn DNA methylation (DNAm), neonatal magnetic resonance imaging (MRI) neuroimaging data, and neurodevelopment. METHODS: Neurodevelopment was assessed in 161 children from the South African Drakenstein Child Health Study at 2 years of age using the Bayley Scales of Infant and Toddler Development III. We performed an epigenome-wide association study of neurodevelopmental delay using DNAm from cord blood. Subsequently, we analysed if associations between DNAm and neurodevelopmental delay were mediated by altered neonatal brain volumes (subset of 51 children). RESULTS: Differential DNAm at SPTBN4 (cg26971411, Δbeta = -0.024, p-value = 3.28 × 10-08), and two intergenic regions (chromosome 11: cg00490349, Δbeta = -0.036, p-value = 3.02 × 10-08; chromosome 17: cg15660740, Δbeta = -0.078, p-value = 6.49 × 10-08) were significantly associated with severe neurodevelopmental delay. While these associations were not mediated by neonatal brain volume, neonatal caudate volumes were independently associated with neurodevelopmental delay, particularly in language (Δcaudate volume = 165.30 mm3, p = 0.0443) and motor (Δcaudate volume = 365.36 mm3, p-value = 0.0082) domains. CONCLUSIONS: Differential DNAm from cord blood and increased neonatal caudate volumes were independently associated with severe neurodevelopmental delay at 2 years of age. These findings suggest that neurobiological signals for severe developmental delay may be detectable in very early life.
Asunto(s)
Cohorte de Nacimiento , Metilación de ADN , Recién Nacido , Humanos , Estudios de Cohortes , Sudáfrica , Encéfalo/patologíaRESUMEN
Importance: Very preterm neonates (24-32 weeks' gestation) remain at a higher risk of morbidity and neurodevelopmental adversity throughout their lifespan. Because the extent of prematurity alone does not fully explain the risk of adverse neonatal brain growth or neurodevelopmental outcomes, there is a need for neonatal biomarkers to help estimate these risks in this population. Objectives: To characterize the pediatric buccal epigenetic (PedBE) clock-a recently developed tool to measure biological aging-among very preterm neonates and to assess its association with the extent of prematurity, neonatal comorbidities, neonatal brain growth, and neurodevelopmental outcomes at 18 months of age. Design, Setting, and Participants: This prospective cohort study was conducted in 2 neonatal intensive care units of 2 hospitals in Toronto, Ontario, Canada. A total of 35 very preterm neonates (24-32 weeks' gestation) were recruited in 2017 and 2018, and neuroimaging was performed and buccal swab samples were acquired at 2 time points: the first in early life (median postmenstrual age, 32.9 weeks [IQR, 32.0-35.0 weeks]) and the second at term-equivalent age (TEA) at a median postmenstrual age of 43.0 weeks (IQR, 41.0-46.0 weeks). Follow-ups for neurodevelopmental assessments were completed in 2019 and 2020. All neonates in this cohort had at least 1 infection because they were originally enrolled to assess the association of neonatal infection with neurodevelopment. Neonates with congenital malformations, genetic syndromes, or congenital TORCH (toxoplasmosis, rubella, cytomegalovirus, herpes and other agents) infection were excluded. Exposures: The extent of prematurity was measured by gestational age at birth and PedBE age difference. PedBE age was computed using DNA methylation obtained from 94 age-informative CpG (cytosine-phosphate-guanosine) sites. PedBE age difference (weeks) was calculated by subtracting PedBE age at each time point from the corresponding postmenstrual age. Main Outcomes and Measures: Total cerebral volumes and cerebral growth during the neonatal intensive care unit period were obtained from magnetic resonance imaging scans at 2 time points: approximately the first 2 weeks of life and at TEA. Bayley Scales of Infant and Toddler Development, Third Edition, were used to assess neurodevelopmental outcomes at 18 months. Results: Among 35 very preterm neonates (21 boys [60.0%]; median gestational age, 27.0 weeks [IQR, 25.9-29.9 weeks]; 23 [65.7%] born extremely preterm [<28 weeks' gestation]), extremely preterm neonates had an accelerated PedBE age compared with neonates born at a later gestational age (ß = 9.0; 95% CI, 2.7-15.3; P = .01). An accelerated PedBE age was also associated with smaller cerebral volumes (ß = -5356.8; 95% CI, -6899.3 to -2961.7; P = .01) and slower cerebral growth (ß = -2651.5; 95% CI, -5301.2 to -1164.1; P = .04); these associations remained significant after adjusting for clinical neonatal factors. These findings were significant at TEA but not earlier in life. Similarly, an accelerated PedBE age at TEA was associated with lower cognitive (ß = -0.4; 95% CI, -0.8 to -0.03; P = .04) and language (ß = -0.6; 95% CI, -1.1 to -0.06; P = .02) scores at 18 months. Conclusions and Relevance: This cohort study of very preterm neonates suggests that biological aging may be associated with impaired brain growth and neurodevelopmental outcomes. The associations between epigenetic aging and adverse neonatal brain health warrant further attention.
Asunto(s)
Recien Nacido Extremadamente Prematuro , Enfermedades del Prematuro , Recién Nacido , Lactante , Masculino , Femenino , Humanos , Niño , Estudios Prospectivos , Estudios de Cohortes , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Enfermedades del Prematuro/epidemiología , Aceleración , Epigénesis Genética , Ontario/epidemiologíaRESUMEN
BACKGROUND: Prenatal exposure to phthalates has been associated with adverse health and neurodevelopmental outcomes. DNA methylation (DNAm) alterations may be a mechanism underlying these effects, but prior investigations of prenatal exposure to phthalates and neonatal DNAm profiles are limited to placental tissue and umbilical cord blood. OBJECTIVE: Conduct an epigenome-wide association study (EWAS) of the associations between prenatal exposure to phthalates and DNAm in two accessible infant tissues, venous buffy coat blood and buccal epithelial cells (BECs). METHODS: Participants included 152 maternal-infant pairs from the Alberta Pregnancy Outcomes and Nutrition (APrON) study. Maternal second trimester urine samples were analyzed for nine phthalate metabolites. Blood (n = 74) or BECs (n = 78) were collected from 3-month-old infants and profiled for DNAm using the Infinium HumanMethylation450 (450K) BeadChip. Robust linear regressions were used to investigate the associations between high (HMWPs) and low molecular weight phthalates (LMWPs) and change in methylation levels at variable Cytosine-phosphate-Guanine (CpG) sites in infant tissues, as well as the sensitivity of associations to potential confounders. RESULTS: One candidate CpG in gene RNF39 reported by a previous study examining prenatal exposure to phthalates and cord blood DNAm was replicated. The EWAS identified 12 high-confidence CpGs in blood and another 12 in BECs associated with HMWPs and/or LMWPs. Prenatal exposure to bisphenol A (BPA) associated with two of the CpGs associated with HMWPs in BECs. DISCUSSION: Prenatal exposure to phthalates was associated with DNAm variation at CpGs annotated to genes associated with endocrine hormone activity (i.e., SLCO4A1, TPO), immune pathways and DNA damage (i.e., RASGEF1B, KAZN, HLA-A, MYO18A, DIP2C, C1or109), and neurodevelopment (i.e., AMPH, NOTCH3, DNAJC5). Future studies that characterize the stability of these associations in larger samples, multiple cohorts, across tissues, and investigate the potential associations between these biomarkers and relevant health and neurodevelopmental outcomes are needed.
Asunto(s)
Epigenoma , Efectos Tardíos de la Exposición Prenatal , Metilación de ADN , Femenino , Sangre Fetal/química , Humanos , Lactante , Recién Nacido , Ácidos Ftálicos , Placenta/metabolismo , Embarazo , Efectos Tardíos de la Exposición Prenatal/genéticaRESUMEN
Around 15-65% of women globally experience depression during pregnancy, prevalence being particularly high in low- and middle-income countries. Prenatal depression has been associated with adverse birth and child development outcomes. DNA methylation (DNAm) may aid in understanding this association. In this project, we analyzed associations between prenatal depression and DNAm from cord blood from participants of the South African Drakenstein Child Health Study. We examined DNAm in an epigenome-wide association study (EWAS) of 248 mother-child pairs. DNAm was measured using the Infinium MethylationEPIC (N = 145) and the Infinium HumanMethylation450 (N = 103) arrays. Prenatal depression scores, obtained with the Edinburgh Postnatal Depression Scale (EPDS) and the Beck Depression Inventory-II (BDI-II), were analyzed as continuous and dichotomized variables. We used linear robust models to estimate associations between depression and newborn DNAm, adjusted for measured (smoking status, household income, sex, preterm birth, cell type proportions, and genetic principal components) and unmeasured confounding using Cate and Bacon algorithms. Bonferroni correction was used to adjust for multiple testing. DMRcate and dmrff were used to test for differentially methylated regions (DMRs). Differential DNAm was significantly associated with BDI-II variables, in cg16473797 (Δ beta = -1.10E-02, p = 6.87E-08), cg23262030 (Δ beta per BDI-II total IQR = 1.47E-03, p = 1.18E-07), and cg04859497 (Δ beta = -6.42E-02, p = 1.06E-09). Five DMRs were associated with at least two depression variables. Further studies are needed to replicate these findings and investigate their biological impact.
Asunto(s)
Metilación de ADN , Nacimiento Prematuro , Depresión/epidemiología , Depresión/genética , Epigénesis Genética , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Recién Nacido , Embarazo , Nacimiento Prematuro/genéticaRESUMEN
Air pollution is associated with early declines in lung function and increased levels of asthma-related cysteinyl leukotrienes (CysLT) but a biological pathway linking this rapid response has not been delineated. In this randomized controlled diesel exhaust (DE) challenge study of 16 adult asthmatics, increased exposure-attributable urinary leukotriene E4 (uLTE4, a biomarker of cysteinyl leukotriene production) was correlated (p = 0.04) with declines in forced expiratory volume in 1-second (FEV1) within 6 hours of exposure. Exposure-attributable uLTE4 increases were correlated (p = 0.02) with increased CysLT receptor 1 (CysLTR1) methylation in peripheral blood mononuclear cells which, in turn, was marginally correlated (p = 0.06) with decreased CysLTR1 expression. Decreased CysLTR1 expression was, in turn, correlated (p = 0.0007) with FEV1 declines. During the same time period, increased methylation of GPR17 (a negative regulator of CysLTR1) was observed after DE exposure (p = 0.02); this methylation increase was correlated (p = 0.001) with decreased CysLTR1 methylation which, in turn, was marginally correlated (p = 0.06) with increased CysLTR1 expression; increased CysLTR1 expression was correlated (p = 0.0007) with FEV1 increases. Collectively, these data delineate a potential mechanistic pathway linking increased DE exposure-attributable CysLT levels to lung function declines through changes in CysLTR1-related methylation and gene expression.
Asunto(s)
Contaminación del Aire , Asma , Metilación de ADN , Receptores de Leucotrienos/genética , Asma/genética , Humanos , Leucocitos Mononucleares , Pulmón , Receptores Acoplados a Proteínas GRESUMEN
Vaccination to prevent infectious disease is one of the most successful public health interventions ever developed. And yet, variability in individual vaccine effectiveness suggests that a better mechanistic understanding of vaccine-induced immune responses could improve vaccine design and efficacy. We have previously shown that protective antibody levels could be elicited in a subset of recipients with only a single dose of the hepatitis B virus (HBV) vaccine and that a wide range of antibody levels were elicited after three doses. The immune mechanisms responsible for this vaccine response variability is unclear. Using single cell RNA sequencing of sorted innate immune cell subsets, we identified two distinct myeloid dendritic cell subsets (NDRG1-expressing mDC2 and CDKN1C-expressing mDC4), the ratio of which at baseline (pre-vaccination) correlated with the immune response to a single dose of HBV vaccine. Our results suggest that the participants in our vaccine study were in one of two different dendritic cell dispositional states at baseline - an NDRG2-mDC2 state in which the vaccine elicited an antibody response after a single immunization or a CDKN1C-mDC4 state in which the vaccine required two or three doses for induction of antibody responses. To explore this correlation further, genes expressed in these mDC subsets were used for feature selection prior to the construction of predictive models using supervised canonical correlation machine learning. The resulting models showed an improved correlation with serum antibody titers in response to full vaccination. Taken together, these results suggest that the propensity of circulating dendritic cells toward either activation or suppression, their "dispositional endotype" at pre-vaccination baseline, could dictate response to vaccination.
Asunto(s)
Células Dendríticas/inmunología , Anticuerpos contra la Hepatitis B/inmunología , Vacunas contra Hepatitis B/inmunología , Hepatitis B/prevención & control , Aprendizaje Automático , Análisis de la Célula Individual , Adulto , Anciano , Análisis de Correlación Canónica , Células Dendríticas/metabolismo , Femenino , Perfilación de la Expresión Génica , Hepatitis B/epidemiología , Secuenciación de Nucleótidos de Alto Rendimiento , Interacciones Huésped-Patógeno , Humanos , Masculino , Persona de Mediana Edad , Análisis de la Célula Individual/métodos , Vacunación , Eficacia de las VacunasRESUMEN
Background: Vaccination remains one of the most effective means of reducing the burden of infectious diseases globally. Improving our understanding of the molecular basis for effective vaccine response is of paramount importance if we are to ensure the success of future vaccine development efforts. Methods: We applied cutting edge multi-omics approaches to extensively characterize temporal molecular responses following vaccination with hepatitis B virus (HBV) vaccine. Data were integrated across cellular, epigenomic, transcriptomic, proteomic, and fecal microbiome profiles, and correlated to final HBV antibody titres. Results: Using both an unsupervised molecular-interaction network integration method (NetworkAnalyst) and a data-driven integration approach (DIABLO), we uncovered baseline molecular patterns and pathways associated with more effective vaccine responses to HBV. Biological associations were unravelled, with signalling pathways such as JAK-STAT and interleukin signalling, Toll-like receptor cascades, interferon signalling, and Th17 cell differentiation emerging as important pre-vaccination modulators of response. Conclusion: This study provides further evidence that baseline cellular and molecular characteristics of an individual's immune system influence vaccine responses, and highlights the utility of integrating information across many parallel molecular datasets.