Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
EMBO J ; 43(16): 3494-3522, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38951610

RESUMEN

Cells have evolved a robust and highly regulated DNA damage response to preserve their genomic integrity. Although increasing evidence highlights the relevance of RNA regulation, our understanding of its impact on a fully efficient DNA damage response remains limited. Here, through a targeted CRISPR-knockout screen, we identify RNA-binding proteins and modifiers that participate in the p53 response. Among the top hits, we find the m6A reader YTHDC1 as a master regulator of p53 expression. YTHDC1 binds to the transcription start sites of TP53 and other genes involved in the DNA damage response, promoting their transcriptional elongation. YTHDC1 deficiency also causes the retention of introns and therefore aberrant protein production of key DNA damage factors. While YTHDC1-mediated intron retention requires m6A, TP53 transcriptional pause-release is promoted by YTHDC1 independently of m6A. Depletion of YTHDC1 causes genomic instability and aberrant cancer cell proliferation mediated by genes regulated by YTHDC1. Our results uncover YTHDC1 as an orchestrator of the DNA damage response through distinct mechanisms of co-transcriptional mRNA regulation.


Asunto(s)
Daño del ADN , Proteína p53 Supresora de Tumor , Humanos , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Factores de Empalme de ARN/metabolismo , Factores de Empalme de ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Adenosina/metabolismo , Adenosina/análogos & derivados , Inestabilidad Genómica , Proliferación Celular , Regulación de la Expresión Génica , Proteínas del Tejido Nervioso
2.
Nat Commun ; 15(1): 978, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38302450

RESUMEN

Besides the well-characterized protein network involved in the replication stress response, several regulatory RNAs have been shown to play a role in this critical process. However, it has remained elusive whether they act locally at the stressed forks. Here, by investigating the RNAs localizing on chromatin upon replication stress induced by hydroxyurea, we identified a set of lncRNAs upregulated in S-phase and controlled by stress transcription factors. Among them, we demonstrate that the previously uncharacterized lncRNA lncREST (long non-coding RNA REplication STress) is transcriptionally controlled by p53 and localizes at stressed replication forks. LncREST-depleted cells experience sustained replication fork progression and accumulate un-signaled DNA damage. Under replication stress, lncREST interacts with the protein NCL and assists in engaging its interaction with RPA. The loss of lncREST is associated with a reduced NCL-RPA interaction and decreased RPA on chromatin, leading to defective replication stress signaling and accumulation of mitotic defects, resulting in apoptosis and a reduction in tumorigenic potential of cancer cells. These findings uncover the function of a lncRNA in favoring the recruitment of replication proteins to sites of DNA replication.


Asunto(s)
Cromatina , ARN Largo no Codificante , Cromatina/genética , Replicación del ADN/genética , ARN Largo no Codificante/genética , Proteína de Replicación A/metabolismo , Fase S/genética , Daño del ADN
3.
Biomolecules ; 14(6)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38927057

RESUMEN

Whole-tissue transcriptomic analyses have been helpful to characterize molecular subtypes of hepatocellular carcinoma (HCC). Metabolic subtypes of human HCC have been defined, yet whether these different metabolic classes are clinically relevant or derive in actionable cancer vulnerabilities is still an unanswered question. Publicly available gene sets or gene signatures have been used to infer functional changes through gene set enrichment methods. However, metabolism-related gene signatures are poorly co-expressed when applied to a biological context. Here, we apply a simple method to infer highly consistent signatures using graph-based statistics. Using the Cancer Genome Atlas Liver Hepatocellular cohort (LIHC), we describe the main metabolic clusters and their relationship with commonly used molecular classes, and with the presence of TP53 or CTNNB1 driver mutations. We find similar results in our validation cohort, the LIRI-JP cohort. We describe how previously described metabolic subtypes could not have therapeutic relevance due to their overall downregulation when compared to non-tumoral liver, and identify N-glycan, mevalonate and sphingolipid biosynthetic pathways as the hallmark of the oncogenic shift of the use of acetyl-coenzyme A in HCC metabolism. Finally, using DepMap data, we demonstrate metabolic vulnerabilities in HCC cell lines.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Transcriptoma , Humanos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Transcriptoma/genética , Regulación Neoplásica de la Expresión Génica , Perfilación de la Expresión Génica , Redes y Vías Metabólicas/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Línea Celular Tumoral , beta Catenina/metabolismo , beta Catenina/genética , Mutación
4.
Brain Commun ; 5(6): fcad344, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38116140

RESUMEN

Huntingtin-lowering strategies are central to therapeutic approaches for Huntington's disease. Recent studies reported the induction of age- and cell type-specific phenotypes by conditional huntingtin knockout, but these experimental conditions did not precisely mimic huntingtin-lowering or gene-editing conditions in terms of the cells targeted and brain distribution, and no transcriptional profiles were provided. Here, we used the adeno-associated delivery system commonly used in CNS gene therapy programmes and the self-inactivating KamiCas9 gene-editing system to investigate the long-term consequences of wild-type mouse huntingtin inactivation in adult neurons and, thus, the feasibility and safety of huntingtin inactivation in these cells. Behavioural and neuropathological analyses and single-nuclei RNA sequencing indicated that huntingtin editing in 77% of striatal neurons and 16% of cortical projecting neurons in adult mice induced no behavioural deficits or cellular toxicity. Single-nuclei RNA sequencing in 11.5-month-old animals showed that huntingtin inactivation did not alter striatal-cell profiles or proportions. Few differentially expressed genes were identified and Augur analysis confirmed an extremely limited response to huntingtin inactivation in all cell types. Our results therefore indicate that wild-type huntingtin inactivation in adult striatal and projection neurons is well tolerated in the long term.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA