Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Genet ; 14(11): e1007812, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30485261

RESUMEN

S-adenosylmethionine (SAM) is a donor which provides the methyl groups for histone or nucleic acid modification and phosphatidylcholine production. SAM is hypothesized to link metabolism and chromatin modification, however, its role in acute gene regulation is poorly understood. We recently found that Caenorhabditis elegans with reduced SAM had deficiencies in H3K4 trimethylation (H3K4me3) at pathogen-response genes, decreasing their expression and limiting pathogen resistance. We hypothesized that SAM may be generally required for stress-responsive transcription. Here, using genetic assays, we show that transcriptional responses to bacterial or xenotoxic stress fail in C. elegans with low SAM, but that expression of heat shock genes are unaffected. We also found that two H3K4 methyltransferases, set-2/SET1 and set-16/MLL, had differential responses to survival during stress. set-2/SET1 is specifically required in bacterial responses, whereas set-16/MLL is universally required. These results define a role for SAM in the acute stress-responsive gene expression. Finally, we find that modification of metabolic gene expression correlates with enhanced survival during stress.


Asunto(s)
Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , S-Adenosilmetionina/metabolismo , Animales , Animales Modificados Genéticamente , Proteínas de Caenorhabditis elegans/antagonistas & inhibidores , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Genes de Helminto , Respuesta al Choque Térmico/genética , Código de Histonas/genética , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Pseudomonas aeruginosa/patogenicidad , Interferencia de ARN , Estrés Fisiológico
2.
Elife ; 122023 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-36756948

RESUMEN

Methylation is a widely occurring modification that requires the methyl donor S-adenosylmethionine (SAM) and acts in regulation of gene expression and other processes. SAM is synthesized from methionine, which is imported or generated through the 1-carbon cycle (1 CC). Alterations in 1 CC function have clear effects on lifespan and stress responses, but the wide distribution of this modification has made identification of specific mechanistic links difficult. Exploiting a dynamic stress-induced transcription model, we find that two SAM synthases in Caenorhabditis elegans, SAMS-1 and SAMS-4, contribute differently to modification of H3K4me3, gene expression and survival. We find that sams-4 enhances H3K4me3 in heat shocked animals lacking sams-1, however, sams-1 cannot compensate for sams-4, which is required to survive heat stress. This suggests that the regulatory functions of SAM depend on its enzymatic source and that provisioning of SAM may be an important regulatory step linking 1 CC function to phenotypes in aging and stress.


Asunto(s)
Histonas , S-Adenosilmetionina , Animales , S-Adenosilmetionina/metabolismo , Histonas/metabolismo , Caenorhabditis elegans/fisiología , Respuesta al Choque Térmico , Expresión Génica
3.
Drug Discov Today ; 22(3): 510-518, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27856347

RESUMEN

Tuberculosis (TB) is the deadliest bacterial disease in the world. New therapeutic agents are urgently needed to replace existing drugs for which resistance is a significant problem. DNA topoisomerases are well-validated targets for antimicrobial and anticancer chemotherapies. Although bacterial topoisomerase I has yet to be exploited as a target for clinical antibiotics, DNA gyrase has been extensively targeted, including the highly clinically successful fluoroquinolones, which have been utilized in TB therapy. Here, we review the exploitation of topoisomerases as antibacterial targets and summarize progress in developing new agents to target DNA topoisomerase I and DNA gyrase from Mycobacterium tuberculosis.


Asunto(s)
Proteínas Bacterianas/metabolismo , Girasa de ADN/metabolismo , ADN-Topoisomerasas de Tipo I/metabolismo , Mycobacterium tuberculosis/enzimología , Tuberculosis/enzimología , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Proteínas Bacterianas/antagonistas & inhibidores , División del ADN , Humanos , Mycobacterium tuberculosis/efectos de los fármacos , Inhibidores de Topoisomerasa I/farmacología , Inhibidores de Topoisomerasa I/uso terapéutico , Inhibidores de Topoisomerasa II/farmacología , Inhibidores de Topoisomerasa II/uso terapéutico , Tuberculosis/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA