Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 185(18): 3356-3374.e22, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36055199

RESUMEN

Drug-tolerant persister cells (persisters) evade apoptosis upon targeted and conventional cancer therapies and represent a major non-genetic barrier to effective cancer treatment. Here, we show that cells that survive treatment with pro-apoptotic BH3 mimetics display a persister phenotype that includes colonization and metastasis in vivo and increased sensitivity toward ferroptosis by GPX4 inhibition. We found that sublethal mitochondrial outer membrane permeabilization (MOMP) and holocytochrome c release are key requirements for the generation of the persister phenotype. The generation of persisters is independent of apoptosome formation and caspase activation, but instead, cytosolic cytochrome c induces the activation of heme-regulated inhibitor (HRI) kinase and engagement of the integrated stress response (ISR) with the consequent synthesis of ATF4, all of which are required for the persister phenotype. Our results reveal that sublethal cytochrome c release couples sublethal MOMP to caspase-independent initiation of an ATF4-dependent, drug-tolerant persister phenotype.


Asunto(s)
Citocromos c , Neoplasias/tratamiento farmacológico , Animales , Apoptosis , Proteínas Portadoras , Caspasas/metabolismo , Citocromos c/metabolismo , Resistencia a Antineoplásicos , Humanos , Ratones , Mitocondrias/metabolismo
2.
Cell ; 176(5): 1113-1127.e16, 2019 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-30712867

RESUMEN

Activating mutations in NRAS account for 20%-30% of melanoma, but despite decades of research and in contrast to BRAF, no effective anti-NRAS therapies have been forthcoming. Here, we identify a previously uncharacterized serine/threonine kinase STK19 as a novel NRAS activator. STK19 phosphorylates NRAS to enhance its binding to its downstream effectors and promotes oncogenic NRAS-mediated melanocyte malignant transformation. A recurrent D89N substitution in STK19 whose alterations were identified in 25% of human melanomas represents a gain-of-function mutation that interacts better with NRAS to enhance melanocyte transformation. STK19D89N knockin leads to skin hyperpigmentation and promotes NRASQ61R-driven melanomagenesis in vivo. Finally, we developed ZT-12-037-01 (1a) as a specific STK19-targeted inhibitor and showed that it effectively blocks oncogenic NRAS-driven melanocyte malignant transformation and melanoma growth in vitro and in vivo. Together, our findings provide a new and viable therapeutic strategy for melanomas harboring NRAS mutations.


Asunto(s)
GTP Fosfohidrolasas/metabolismo , Melanoma/genética , Proteínas de la Membrana/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Línea Celular Tumoral , Transformación Celular Neoplásica , Femenino , Células HEK293 , Humanos , Melanocitos/metabolismo , Melanoma/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Desnudos , Mutación , Fosforilación , Proteínas Proto-Oncogénicas B-raf/metabolismo , Transducción de Señal , Neoplasias Cutáneas/genética
3.
Genes Dev ; 38(1-2): 70-94, 2024 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-38316520

RESUMEN

Since genome instability can drive cancer initiation and progression, cells have evolved highly effective and ubiquitous DNA damage response (DDR) programs. However, some cells (for example, in skin) are normally exposed to high levels of DNA-damaging agents. Whether such high-risk cells possess lineage-specific mechanisms that tailor DNA repair to the tissue remains largely unknown. Using melanoma as a model, we show here that the microphthalmia-associated transcription factor MITF, a lineage addition oncogene that coordinates many aspects of melanocyte and melanoma biology, plays a nontranscriptional role in shaping the DDR. On exposure to DNA-damaging agents, MITF is phosphorylated at S325, and its interactome is dramatically remodeled; most transcription cofactors dissociate, and instead MITF interacts with the MRE11-RAD50-NBS1 (MRN) complex. Consequently, cells with high MITF levels accumulate stalled replication forks and display defects in homologous recombination-mediated repair associated with impaired MRN recruitment to DNA damage. In agreement with this, high MITF levels are associated with increased single-nucleotide and copy number variant burdens in melanoma. Significantly, the SUMOylation-defective MITF-E318K melanoma predisposition mutation recapitulates the effects of DNA-PKcs-phosphorylated MITF. Our data suggest that a nontranscriptional function of a lineage-restricted transcription factor contributes to a tissue-specialized modulation of the DDR that can impact cancer initiation.


Asunto(s)
Melanoma , Humanos , Melanoma/genética , Factor de Transcripción Asociado a Microftalmía/genética , Daño del ADN , Inestabilidad Genómica/genética , ADN
5.
Genes Dev ; 35(23-24): 1657-1677, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34819350

RESUMEN

Senescence shapes embryonic development, plays a key role in aging, and is a critical barrier to cancer initiation, yet how senescence is regulated remains incompletely understood. TBX2 is an antisenescence T-box family transcription repressor implicated in embryonic development and cancer. However, the repertoire of TBX2 target genes, its cooperating partners, and how TBX2 promotes proliferation and senescence bypass are poorly understood. Here, using melanoma as a model, we show that TBX2 lies downstream from PI3K signaling and that TBX2 binds and is required for expression of E2F1, a key antisenescence cell cycle regulator. Remarkably, TBX2 binding in vivo is associated with CACGTG E-boxes, present in genes down-regulated by TBX2 depletion, more frequently than the consensus T-element DNA binding motif that is restricted to Tbx2 repressed genes. TBX2 is revealed to interact with a wide range of transcription factors and cofactors, including key components of the BCOR/PRC1.1 complex that are recruited by TBX2 to the E2F1 locus. Our results provide key insights into how PI3K signaling modulates TBX2 function in cancer to drive proliferation.


Asunto(s)
Melanoma , Proteínas de Dominio T Box , Expresión Génica , Humanos , Melanoma/genética , Melanoma/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Factores de Transcripción/metabolismo
6.
Mol Cell ; 77(1): 120-137.e9, 2020 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-31733993

RESUMEN

Phenotypic and metabolic heterogeneity within tumors is a major barrier to effective cancer therapy. How metabolism is implicated in specific phenotypes and whether lineage-restricted mechanisms control key metabolic vulnerabilities remain poorly understood. In melanoma, downregulation of the lineage addiction oncogene microphthalmia-associated transcription factor (MITF) is a hallmark of the proliferative-to-invasive phenotype switch, although how MITF promotes proliferation and suppresses invasion is poorly defined. Here, we show that MITF is a lineage-restricted activator of the key lipogenic enzyme stearoyl-CoA desaturase (SCD) and that SCD is required for MITFHigh melanoma cell proliferation. By contrast MITFLow cells are insensitive to SCD inhibition. Significantly, the MITF-SCD axis suppresses metastasis, inflammatory signaling, and an ATF4-mediated feedback loop that maintains de-differentiation. Our results reveal that MITF is a lineage-specific regulator of metabolic reprogramming, whereby fatty acid composition is a driver of melanoma phenotype switching, and highlight that cell phenotype dictates the response to drugs targeting lipid metabolism.


Asunto(s)
Adaptación Fisiológica/fisiología , Ácidos Grasos/metabolismo , Melanoma/metabolismo , Factor de Transcripción Asociado a Microftalmía/metabolismo , Estearoil-CoA Desaturasa/metabolismo , Animales , Diferenciación Celular/fisiología , Línea Celular Tumoral , Proliferación Celular/fisiología , Regulación hacia Abajo/fisiología , Humanos , Ratones , Invasividad Neoplásica/patología , Fenotipo , Transducción de Señal/fisiología
7.
Mol Cell ; 79(3): 472-487.e10, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32531202

RESUMEN

It is widely assumed that decreasing transcription factor DNA-binding affinity reduces transcription initiation by diminishing occupancy of sequence-specific regulatory elements. However, in vivo transcription factors find their binding sites while confronted with a large excess of low-affinity degenerate motifs. Here, using the melanoma lineage survival oncogene MITF as a model, we show that low-affinity binding sites act as a competitive reservoir in vivo from which transcription factors are released by mitogen-activated protein kinase (MAPK)-stimulated acetylation to promote increased occupancy of their regulatory elements. Consequently, a low-DNA-binding-affinity acetylation-mimetic MITF mutation supports melanocyte development and drives tumorigenesis, whereas a high-affinity non-acetylatable mutant does not. The results reveal a paradoxical acetylation-mediated molecular clutch that tunes transcription factor availability via genome-wide redistribution and couples BRAF to tumorigenesis. Our results further suggest that p300/CREB-binding protein-mediated transcription factor acetylation may represent a common mechanism to control transcription factor availability.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Genoma , Melanoma/genética , Factor de Transcripción Asociado a Microftalmía/genética , Procesamiento Proteico-Postraduccional , Neoplasias Cutáneas/genética , Acetilación , Secuencia de Aminoácidos , Animales , Sitios de Unión , Línea Celular Tumoral , Secuencia Conservada , Elementos de Facilitación Genéticos , Femenino , Xenoinjertos , Humanos , Masculino , Melanocitos/metabolismo , Melanocitos/patología , Melanoma/metabolismo , Melanoma/patología , Ratones , Ratones Desnudos , Factor de Transcripción Asociado a Microftalmía/química , Factor de Transcripción Asociado a Microftalmía/metabolismo , Motivos de Nucleótidos , Regiones Promotoras Genéticas , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/patología , Pez Cebra
8.
Genes Dev ; 33(15-16): 983-1007, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31123060

RESUMEN

All transcription factors are equal, but some are more equal than others. In the 25 yr since the gene encoding the microphthalmia-associated transcription factor (MITF) was first isolated, MITF has emerged as a key coordinator of many aspects of melanocyte and melanoma biology. Like all transcription factors, MITF binds to specific DNA sequences and up-regulates or down-regulates its target genes. What marks MITF as being remarkable among its peers is the sheer range of biological processes that it appears to coordinate. These include cell survival, differentiation, proliferation, invasion, senescence, metabolism, and DNA damage repair. In this article we present our current understanding of MITF's role and regulation in development and disease, as well as those of the MITF-related factors TFEB and TFE3, and highlight key areas where our knowledge of MITF regulation and function is limited.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Regulación Neoplásica de la Expresión Génica , Melanocitos/fisiología , Melanoma/fisiopatología , Factor de Transcripción Asociado a Microftalmía/metabolismo , Animales , Genoma , Humanos , Factor de Transcripción Asociado a Microftalmía/genética , Unión Proteica , Isoformas de Proteínas
9.
Genes Dev ; 33(19-20): 1295-1318, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31575676

RESUMEN

An incomplete view of the mechanisms that drive metastasis, the primary cause of cancer-related death, has been a major barrier to development of effective therapeutics and prognostic diagnostics. Increasing evidence indicates that the interplay between microenvironment, genetic lesions, and cellular plasticity drives the metastatic cascade and resistance to therapies. Here, using melanoma as a model, we outline the diversity and trajectories of cell states during metastatic dissemination and therapy exposure, and highlight how understanding the magnitude and dynamics of nongenetic reprogramming in space and time at single-cell resolution can be exploited to develop therapeutic strategies that capitalize on nongenetic tumor evolution.


Asunto(s)
Plasticidad de la Célula , Melanoma/fisiopatología , Metástasis de la Neoplasia/fisiopatología , Resistencia a Antineoplásicos , Regulación Neoplásica de la Expresión Génica , Humanos , Melanoma/terapia , Factor de Transcripción Asociado a Microftalmía/genética , Factor de Transcripción Asociado a Microftalmía/metabolismo , Células Madre Neoplásicas/citología , Fenotipo , Microambiente Tumoral
10.
Genes Dev ; 33(5-6): 310-332, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30804224

RESUMEN

Whether cell types exposed to a high level of environmental insults possess cell type-specific prosurvival mechanisms or enhanced DNA damage repair capacity is not well understood. BRN2 is a tissue-restricted POU domain transcription factor implicated in neural development and several cancers. In melanoma, BRN2 plays a key role in promoting invasion and regulating proliferation. Here we found, surprisingly, that rather than interacting with transcription cofactors, BRN2 is instead associated with DNA damage response proteins and directly binds PARP1 and Ku70/Ku80. Rapid PARP1-dependent BRN2 association with sites of DNA damage facilitates recruitment of Ku80 and reprograms DNA damage repair by promoting Ku-dependent nonhomologous end-joining (NHEJ) at the expense of homologous recombination. BRN2 also suppresses an apoptosis-associated gene expression program to protect against UVB-, chemotherapy- and vemurafenib-induced apoptosis. Remarkably, BRN2 expression also correlates with a high single-nucleotide variation prevalence in human melanomas. By promoting error-prone DNA damage repair via NHEJ and suppressing apoptosis of damaged cells, our results suggest that BRN2 contributes to the generation of melanomas with a high mutation burden. Our findings highlight a novel role for a key transcription factor in reprogramming DNA damage repair and suggest that BRN2 may impact the response to DNA-damaging agents in BRN2-expressing cancers.


Asunto(s)
Apoptosis , Reparación del ADN por Unión de Extremidades/genética , Proteínas de Homeodominio/metabolismo , Melanoma/genética , Melanoma/fisiopatología , Mutación/genética , Factores del Dominio POU/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/genética , Proteínas de Homeodominio/genética , Humanos , Autoantígeno Ku/metabolismo , Factores del Dominio POU/genética , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Unión Proteica , Dominios Proteicos , Transporte de Proteínas
11.
Genes Dev ; 31(1): 18-33, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28096186

RESUMEN

The intratumor microenvironment generates phenotypically distinct but interconvertible malignant cell subpopulations that fuel metastatic spread and therapeutic resistance. Whether different microenvironmental cues impose invasive or therapy-resistant phenotypes via a common mechanism is unknown. In melanoma, low expression of the lineage survival oncogene microphthalmia-associated transcription factor (MITF) correlates with invasion, senescence, and drug resistance. However, how MITF is suppressed in vivo and how MITF-low cells in tumors escape senescence are poorly understood. Here we show that microenvironmental cues, including inflammation-mediated resistance to adoptive T-cell immunotherapy, transcriptionally repress MITF via ATF4 in response to inhibition of translation initiation factor eIF2B. ATF4, a key transcription mediator of the integrated stress response, also activates AXL and suppresses senescence to impose the MITF-low/AXL-high drug-resistant phenotype observed in human tumors. However, unexpectedly, without translation reprogramming an ATF4-high/MITF-low state is insufficient to drive invasion. Importantly, translation reprogramming dramatically enhances tumorigenesis and is linked to a previously unexplained gene expression program associated with anti-PD-1 immunotherapy resistance. Since we show that inhibition of eIF2B also drives neural crest migration and yeast invasiveness, our results suggest that translation reprogramming, an evolutionarily conserved starvation response, has been hijacked by microenvironmental stress signals in melanoma to drive phenotypic plasticity and invasion and determine therapeutic outcome.


Asunto(s)
Plasticidad de la Célula/genética , Reprogramación Celular/genética , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica/genética , Melanoma/genética , Factor de Transcripción Asociado a Microftalmía/genética , Biosíntesis de Proteínas/genética , Animales , Microambiente Celular , Evolución Molecular , Retroalimentación Fisiológica , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glutamina/farmacología , Humanos , Inmunoterapia , Melanoma/tratamiento farmacológico , Melanoma/metabolismo , Invasividad Neoplásica/genética , Cresta Neural/citología , Fenotipo , Factores de Transcripción/metabolismo , Pez Cebra/embriología
12.
PLoS Biol ; 18(6): e3000732, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32603375

RESUMEN

Coordination of gene expression with nutrient availability supports proliferation and homeostasis and is shaped by protein acetylation. Yet how physiological/pathological signals link acetylation to specific gene expression programs and whether such responses are cell-type-specific is unclear. AMP-activated protein kinase (AMPK) is a key energy sensor, activated by glucose limitation to resolve nutrient supply-demand imbalances, critical for diabetes and cancer. Unexpectedly, we show here that, in gastrointestinal cancer cells, glucose activates AMPK to selectively induce EP300, but not CREB-binding protein (CBP). Consequently, EP300 is redirected away from nuclear receptors that promote differentiation towards ß-catenin, a driver of proliferation and colorectal tumorigenesis. Importantly, blocking glycogen synthesis permits reactive oxygen species (ROS) accumulation and AMPK activation in response to glucose in previously nonresponsive cells. Notably, glycogen content and activity of the ROS/AMPK/EP300/ß-catenin axis are opposite in healthy versus tumor sections. Glycogen content reduction from healthy to tumor tissue may explain AMPK switching from tumor suppressor to activator during tumor evolution.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Neoplasias Colorrectales/metabolismo , Proteína p300 Asociada a E1A/metabolismo , Glucosa/farmacología , Animales , Proteína de Unión a CREB/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Neoplasias Colorrectales/patología , Activación Enzimática/efectos de los fármacos , Glucógeno/metabolismo , Ratones Endogámicos C57BL , Unión Proteica/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , beta Catenina/metabolismo
13.
Nature ; 549(7672): 399-403, 2017 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-28869973

RESUMEN

The melanocortin-1 receptor (MC1R), a G-protein-coupled receptor, has a crucial role in human and mouse pigmentation. Activation of MC1R in melanocytes by α-melanocyte-stimulating hormone (α-MSH) stimulates cAMP signalling and melanin production and enhances DNA repair after ultraviolet irradiation. Individuals carrying MC1R variants, especially those associated with red hair colour, fair skin and poor tanning ability (denoted as RHC variants), are associated with higher risk of melanoma. However, how MC1R activity is modulated by ultraviolet irradiation, why individuals with red hair are more prone to developing melanoma, and whether the activity of RHC variants might be restored for therapeutic benefit are unknown. Here we demonstrate a potential MC1R-targeted intervention strategy in mice to rescue loss-of-function MC1R in MC1R RHC variants for therapeutic benefit by activating MC1R protein palmitoylation. MC1R palmitoylation, primarily mediated by the protein-acyl transferase ZDHHC13, is essential for activating MC1R signalling, which triggers increased pigmentation, ultraviolet-B-induced G1-like cell cycle arrest and control of senescence and melanomagenesis in vitro and in vivo. Using C57BL/6J-Mc1re/eJ mice, in which endogenous MC1R is prematurely terminated, expressing Mc1r RHC variants, we show that pharmacological activation of palmitoylation rescues the defects of Mc1r RHC variants and prevents melanomagenesis. The results highlight a central role for MC1R palmitoylation in pigmentation and protection against melanoma.


Asunto(s)
Transformación Celular Neoplásica/metabolismo , Lipoilación , Melanoma/metabolismo , Melanoma/prevención & control , Pigmentación , Receptor de Melanocortina Tipo 1/química , Receptor de Melanocortina Tipo 1/metabolismo , Aciltransferasas/metabolismo , Animales , Femenino , Humanos , Masculino , Melanocitos/metabolismo , Melanoma/patología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación , Pigmentación/genética , Receptor de Melanocortina Tipo 1/genética
14.
PLoS Genet ; 15(12): e1008501, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31881017

RESUMEN

The MITF and SOX10 transcription factors regulate the expression of genes important for melanoma proliferation, invasion and metastasis. Despite growing evidence of the contribution of long noncoding RNAs (lncRNAs) in cancer, including melanoma, their functions within MITF-SOX10 transcriptional programmes remain poorly investigated. Here we identify 245 candidate melanoma associated lncRNAs whose loci are co-occupied by MITF-SOX10 and that are enriched at active enhancer-like regions. Our work suggests that one of these, Disrupted In Renal Carcinoma 3 (DIRC3), may be a clinically important MITF-SOX10 regulated tumour suppressor. DIRC3 depletion in human melanoma cells leads to increased anchorage-independent growth, a hallmark of malignant transformation, whilst melanoma patients classified by low DIRC3 expression have decreased survival. DIRC3 is a nuclear lncRNA that activates expression of its neighbouring IGFBP5 tumour suppressor through modulating chromatin structure and suppressing SOX10 binding to putative regulatory elements within the DIRC3 locus. In turn, DIRC3 dependent regulation of IGFBP5 impacts the expression of genes involved in cancer associated processes and is needed for DIRC3 control of anchorage-independent growth. Our work indicates that lncRNA components of MITF-SOX10 networks are an important new class of melanoma regulators and candidate therapeutic targets that can act not only as downstream mediators of MITF-SOX10 function but as feedback regulators of MITF-SOX10 activity.


Asunto(s)
Proteína 5 de Unión a Factor de Crecimiento Similar a la Insulina/genética , Melanoma/genética , Factor de Transcripción Asociado a Microftalmía/genética , ARN Largo no Codificante/genética , Factores de Transcripción SOXE/genética , Línea Celular Tumoral , Núcleo Celular/genética , Proliferación Celular , Regulación hacia Abajo , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Pronóstico , Análisis de Secuencia de ARN , Análisis de Supervivencia
15.
Pharmacol Res ; 173: 105911, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34560251

RESUMEN

In melanomas, therapy resistance can arise due to a combination of genetic, epigenetic and phenotypic mechanisms. Due to its crucial role in DNA supercoil relaxation, TOP1 is often considered an essential chemotherapeutic target in cancer. However, how TOP1 expression and activity might differ in therapy sensitive versus resistant cell types is unknown. Here we show that TOP1 expression is increased in metastatic melanoma and correlates with an invasive gene expression signature. More specifically, TOP1 expression is highest in cells with the lowest expression of MITF, a key regulator of melanoma biology. Notably, TOP1 and DNA Single-Strand Break Repair genes are downregulated in BRAFi- and BRAFi/MEKi-resistant cells and TOP1 inhibition decreases invasion markers only in BRAFi/MEKi-resistant cells. Thus, we show three different phenotypes related to TOP1 levels: i) non-malignant cells with low TOP1 levels; ii) metastatic cells with high TOP1 levels and high invasiveness; and iii) BRAFi- and BRAFi/MEKi-resistant cells with low TOP1 levels and high invasiveness. Together, these results highlight the potential role of TOP1 in melanoma progression and resistance.


Asunto(s)
ADN-Topoisomerasas de Tipo I , Resistencia a Antineoplásicos , Melanoma , Neoplasias Cutáneas , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , ADN-Topoisomerasas de Tipo I/genética , ADN-Topoisomerasas de Tipo I/metabolismo , Progresión de la Enfermedad , Femenino , Humanos , Estimación de Kaplan-Meier , Masculino , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/metabolismo , Melanoma/mortalidad , Persona de Mediana Edad , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/mortalidad
16.
Mol Cell ; 51(4): 409-22, 2013 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-23973372

RESUMEN

The individuals carrying melanocortin-1 receptor (MC1R) variants, especially those associated with red hair color, fair skin, and poor tanning ability (RHC trait), are more prone to melanoma; however, the underlying mechanism is poorly defined. Here, we report that UVB exposure triggers phosphatase and tensin homolog (PTEN) interaction with wild-type (WT), but not RHC-associated MC1R variants, which protects PTEN from WWP2-mediated degradation, leading to AKT inactivation. Strikingly, the biological consequences of the failure of MC1R variants to suppress PI3K/AKT signaling are highly context dependent. In primary melanocytes, hyperactivation of PI3K/AKT signaling leads to premature senescence; in the presence of BRAF(V600E), MC1R deficiency-induced elevated PI3K/AKT signaling drives oncogenic transformation. These studies establish the MC1R-PTEN axis as a central regulator for melanocytes' response to UVB exposure and reveal the molecular basis underlying the association between MC1R variants and melanomagenesis.


Asunto(s)
Regulación de la Expresión Génica/efectos de la radiación , Melanocitos/metabolismo , Melanoma Experimental/patología , Fosfohidrolasa PTEN/metabolismo , Receptor de Melanocortina Tipo 1/metabolismo , Pigmentación de la Piel/fisiología , Rayos Ultravioleta , Animales , Western Blotting , Células Cultivadas , Humanos , Técnicas para Inmunoenzimas , Melanocitos/efectos de la radiación , Melanoma Experimental/genética , Melanoma Experimental/metabolismo , Ratones , Mutación/genética , Fosfohidrolasa PTEN/genética , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptor de Melanocortina Tipo 1/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Pigmentación de la Piel/efectos de la radiación , alfa-MSH/genética , alfa-MSH/metabolismo
17.
Handb Exp Pharmacol ; 265: 269-301, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32548785

RESUMEN

The landscape of cancer treatment has improved over the past decades, aiming to reduce systemic toxicity and enhance compatibility with the quality of life of the patient. However, at the therapeutic level, metastatic cancer remains hugely challenging, based on the almost inevitable emergence of therapy resistance. A small subpopulation of cells able to survive drug treatment termed the minimal residual disease may either harbor resistance-associated mutations or be phenotypically resistant, allowing them to regrow and become the dominant population in the therapy-resistant tumor. Characterization of the profile of minimal residual disease represents the key to the identification of resistance drivers that underpin cancer evolution. Therapeutic regimens must, therefore, be dynamic and tailored to take into account the emergence of resistance as tumors evolve within a complex microenvironment in vivo. This requires the adoption of new technologies based on the culture of cancer cells in ways that more accurately reflect the intratumor microenvironment, and their analysis using omics and system-based technologies to enable a new era in the diagnostics, classification, and treatment of many cancer types by applying the concept "from the cell plate to the patient." In this chapter, we will present and discuss 3D model building and use, and provide comprehensive information on new genomic techniques that are increasing our understanding of drug action and the emergence of resistance.


Asunto(s)
Antineoplásicos , Neoplasias , Antineoplásicos/farmacología , Desarrollo de Medicamentos , Humanos , Neoplasias/tratamiento farmacológico , Calidad de Vida , Biología de Sistemas , Microambiente Tumoral
18.
Proc Natl Acad Sci U S A ; 115(37): E8668-E8677, 2018 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-30150413

RESUMEN

The close integration of the MAPK, PI3K, and WNT signaling pathways underpins much of development and is deregulated in cancer. In principle, combinatorial posttranslational modification of key lineage-specific transcription factors would be an effective means to integrate critical signaling events. Understanding how this might be achieved is central to deciphering the impact of microenvironmental cues in development and disease. The microphthalmia-associated transcription factor MITF plays a crucial role in the development of melanocytes, the retinal pigment epithelium, osteoclasts, and mast cells and acts as a lineage survival oncogene in melanoma. MITF coordinates survival, differentiation, cell-cycle progression, cell migration, metabolism, and lysosome biogenesis. However, how the activity of this key transcription factor is controlled remains poorly understood. Here, we show that GSK3, downstream from both the PI3K and Wnt pathways, and BRAF/MAPK signaling converges to control MITF nuclear export. Phosphorylation of the melanocyte MITF-M isoform in response to BRAF/MAPK signaling primes for phosphorylation by GSK3, a kinase inhibited by both PI3K and Wnt signaling. Dual phosphorylation, but not monophosphorylation, then promotes MITF nuclear export by activating a previously unrecognized hydrophobic export signal. Nonmelanocyte MITF isoforms exhibit poor regulation by MAPK signaling, but instead their export is controlled by mTOR. We uncover here an unanticipated mode of MITF regulation that integrates the output of key developmental and cancer-associated signaling pathways to gate MITF flux through the import-export cycle. The results have significant implications for our understanding of melanoma progression and stem cell renewal.


Asunto(s)
Núcleo Celular/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Sistema de Señalización de MAP Quinasas , Factor de Transcripción Asociado a Microftalmía/metabolismo , Proteínas Proto-Oncogénicas B-raf/metabolismo , Transporte Activo de Núcleo Celular , Animales , Línea Celular Tumoral , Células Cultivadas , Células HeLa , Humanos , Melanoma/genética , Melanoma/metabolismo , Melanoma/patología , Factor de Transcripción Asociado a Microftalmía/genética , Mutación , Fosforilación , Unión Proteica
19.
N Engl J Med ; 373(1): 48-59, 2015 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-26132941

RESUMEN

BACKGROUND: Erythropoietic protoporphyria is a severe photodermatosis that is associated with acute phototoxicity. Patients with this condition have excruciating pain and a markedly reduced quality of life. We evaluated the safety and efficacy of an α-melanocyte-stimulating hormone analogue, afamelanotide, to decrease pain and improve quality of life. METHODS: We conducted two multicenter, randomized, double-blind, placebo-controlled trials of subcutaneous implants containing 16 mg of afamelanotide. Patients in the European Union (74 patients) and the United States (94 patients) were randomly assigned, in a 1:1 ratio, to receive a subcutaneous implant containing either afamelanotide or placebo every 60 days (a total of five implants in the European Union study and three in the U.S study). The type and duration of sun exposure, number and severity of phototoxic reactions, and adverse events were recorded over the respective 180-day and 270-day study periods. Quality of life was assessed with the use of validated questionnaires. A subgroup of U.S. patients underwent photoprovocation testing. The primary efficacy end point was the number of hours of direct exposure to sunlight without pain. RESULTS: In the U.S. study, the duration of pain-free time after 6 months was longer in the afamelanotide group (median, 69.4 hours, vs. 40.8 hours in the placebo group; P=0.04). In the European Union study, the duration of pain-free time after 9 months was also longer in the afamelanotide group than in the placebo group (median, 6.0 hours vs. 0.8 hours; P=0.005), and the number of phototoxic reactions was lower in the the afamelanotide group (77 vs. 146, P=0.04). In both trials, quality of life improved with afamelanotide therapy. Adverse events were mostly mild; serious adverse events were not thought to be related to the study drug. CONCLUSIONS: Afamelanotide had an acceptable side-effect and adverse-event profile and was associated with an increased duration of sun exposure without pain and improved quality of life in patients with erythropoietic protoporphyria. (Funded by Clinuvel Pharmaceuticals and others; ClinicalTrials.gov numbers, NCT01605136 and NCT00979745.).


Asunto(s)
Dolor/prevención & control , Protoporfiria Eritropoyética/tratamiento farmacológico , Luz Solar/efectos adversos , alfa-MSH/análogos & derivados , Adulto , Método Doble Ciego , Implantes de Medicamentos , Humanos , Persona de Mediana Edad , Dolor/etiología , Protoporfiria Eritropoyética/complicaciones , alfa-MSH/efectos adversos , alfa-MSH/uso terapéutico
20.
Mol Cell ; 37(2): 282-93, 2010 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-20122409

RESUMEN

The RAG1 and RAG2 proteins are the only lymphoid-specific factors required to perform the first step of V(D)J recombination, DNA cleavage. While the catalytic domain of RAG1, the core region, has been well characterized, the role of the noncore region in modulating chromosomal V(D)J recombination efficiency remains ill defined. Recent studies have highlighted the role of chromatin structure in regulation of V(D)J recombination. Here we show that RAG1 itself, through a RING domain within its N-terminal noncore region, preferentially interacts directly with and promotes monoubiquitylation of histone H3. Mutations affecting the RAG1 RING domain reduce histone H3 monoubiquitylation activity, decrease V(D)J recombination activity in vivo, reduce formation of both signal-joint and coding-joint products on episomal substrates, and decrease efficiency of V(D)J recombination at the endogenous IgH locus in lymphoid cells. The results reveal that RAG1-mediated histone monoubiquitylation activity plays a role in regulating the joining phase of chromosomal V(D)J recombination.


Asunto(s)
Cromatina/metabolismo , Histonas/metabolismo , Proteínas de Homeodominio/fisiología , Dominios RING Finger/fisiología , Sitios de Unión , Línea Celular , Proteínas de Homeodominio/química , Humanos , Mutagénesis Sitio-Dirigida , Recombinación Genética , Ubiquitinación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA