Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Heliyon ; 10(3): e25020, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38317944

RESUMEN

Natural and thermally modified Pine, Ash, and Acacia woods were exposed in two different environments: urban and maritime/industrial. The weathering effects were evaluated during 24 months regarding color, chemical, and structural changes. In all wood species, thermal modification induced color, chemical, and structural changes. All woods became darker (Pine ΔL*: -32.01; Ash ΔL*: -36.83; Acacia ΔL*: -27.50), total extractives content increased (Pine: 19 %; Ash: 32 % and Acacia: 18 %), and the samples presented deformation and damaged cells. Total lignin was not significantly changed, although there were detected changes in lignin, namely the reduction of G-units in Pine (≈2 %) and reduction of S/G ratio in Acacia (≈0.04 %). Ash remained almost the same. After weathering, modified woods suffered fewer color changes, indicating that the thermal modification could improve the resistance to color change. Acacia wood, when exposed to maritime/industrial conditions, revealed a higher color change (ΔE: 35.7 at 24 months) when compared with urban conditions (ΔE: 23.5 at 24 months). Delignification, possibly caused by photodegradation, occurred in all wood samples, and the loss of extractive happened, perhaps caused by rain. Modified woods were slightly less resistant to weathering in maritime/industrial environments. Some structural damage, namely cracked cells, the appearance of molds, blue staining, and particle deposition, was observed. The thermal modification enables color stabilization but does not seem to improve the weathering resistance in all studied wood species. Exposure to the different environments did not lead to significant differences in the morphology and chemical composition of the three natural and modified wood species.

2.
Environ Sci Pollut Res Int ; 26(22): 22723-22735, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31168718

RESUMEN

The aim of the present work was to assess the efficiency of biochars obtained from the co-gasification of blends of rice husk + corn cob (biochar 50CC) and rice husk + eucalyptus stumps (biochar 50ES), as potential renewable low-cost adsorbents for Cr(III) recovery from wastewaters. The two gasification biochars presented a weak porous structure (ABET = 63-144 m2 g-1), but a strong alkaline character, promoted by a high content of mineral matter (59.8% w/w of ashes for 50CC biochar and 81.9% w/w for 50ES biochar). The biochars were used for Cr(III) recovery from synthetic solutions by varying the initial pH value (3, 4, and 5), liquid/solid (L/S) ratio (100-500 mL g-1), contact time (1-120 h), and initial Cr(III) concentration (10-150 mg L-1). High Cr(III) removal percentages (around 100%) were obtained for both biochars, due to Cr precipitation, at low L/S ratios (100 and 200 mL g-1), for the initial pH 5 and initial Cr concentration of 50 mg L-1. Under the experimental conditions in which other removal mechanisms rather than precipitation occurred, a higher removal percentage (49.9%) and the highest uptake capacity (6.87 mg g-1) were registered for 50CC biochar. In the equilibrium, 50ES biochar presented a Cr(III) removal percentage of 27% with a maximum uptake capacity of 2.58 mg g-1. The better performance on Cr(III) recovery for the biochar 50CC was attributed to its better textural properties, as well as its higher cation exchange capacity.


Asunto(s)
Carbón Orgánico/química , Cromo/análisis , Agricultura Forestal , Administración de Residuos/métodos , Aguas Residuales/química , Contaminantes Químicos del Agua/análisis , Adsorción , Agricultura , Cromo/química , Oryza/química , Contaminantes Químicos del Agua/química
3.
Environ Sci Pollut Res Int ; 24(28): 22698-22708, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28815412

RESUMEN

This work is dedicated to study the potential application of char byproducts obtained in the gasification of rice husk (RG char) and rice husk blended with corn cob (RCG char) as removal agents of two emergent aquatic contaminants: tetracycline and caffeine. The chars presented high ash contents (59.5-81.5%), being their mineral content mainly composed of silicon (as silica) and potassium. The samples presented a strong basic character, which was related to its higher mineral oxides content. RCG char presented better textural properties with a higher apparent surface area (144 m2 g-1) and higher micropore content (V micro = 0.05 cm3 g-1). The alkaline character of both chars promoted high ecotoxicity levels on their aqueous eluates; however, the ecotoxic behaviour was eliminated after pH correction. Adsorption experiments showed that RG char presented higher uptake capacity for both tetracycline (12.9 mg g-1) and caffeine (8.0 mg g-1), indicating that textural properties did not play a major role in the adsorption process. For tetracycline, the underlying adsorption mechanism was complexation or ion exchange reactions with the mineral elements of chars. The higher affinity of RG char to caffeine was associated with the higher alkaline character presented by this char.


Asunto(s)
Carbón Orgánico/química , Modelos Teóricos , Contaminantes Químicos del Agua/análisis , Adsorción , Cafeína/análisis , Oryza/química , Silicio/química , Propiedades de Superficie , Tetraciclina/análisis , Zea mays/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA