RESUMEN
The adaptor protein Amot130 scaffolds components of the Hippo pathway to promote the inhibition of cell growth. This study describes how Amot130 through binding and activating the ubiquitin ligase AIP4/Itch achieves these effects. AIP4 is found to bind and ubiquitinate Amot130 at residue Lys-481. This both stabilizes Amot130 and promotes its residence at the plasma membrane. Furthermore, Amot130 is shown to scaffold a complex containing overexpressed AIP4 and the transcriptional co-activator Yes-associated protein (YAP). Consequently, Amot130 promotes the ubiquitination of YAP by AIP4 and prevents AIP4 from binding to large tumor suppressor 1. Amot130 is found to reduce YAP stability. Importantly, Amot130 inhibition of YAP dependent transcription is reversed by AIP4 silencing, whereas Amot130 and AIP4 expression interdependently suppress cell growth. Thus, Amot130 repurposes AIP4 from its previously described role in degrading large tumor suppressor 1 to the inhibition of YAP and cell growth.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proliferación Celular , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas de la Membrana/metabolismo , Fosfoproteínas/metabolismo , Proteínas Represoras/metabolismo , Transducción de Señal/fisiología , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Angiomotinas , Regulación de la Expresión Génica/fisiología , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Proteínas de la Membrana/genética , Proteínas de Microfilamentos , Fosfoproteínas/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Estabilidad Proteica , Proteolisis , Proteínas Represoras/genética , Factores de Transcripción , Transcripción Genética/fisiología , Ubiquitina-Proteína Ligasas/genética , Proteínas Señalizadoras YAPRESUMEN
Gentamicin is a highly efficacious antibiotic against Gram-negative bacteria. However, its usefulness in treating infections is compromised by its poorly understood renal toxicity. Toxic effects are also seen in a variety of other organisms. While the yeast Saccharomyces cerevisiae is relatively insensitive to gentamicin, mutations in any one of â¼20 genes cause a dramatic decrease in resistance. Many of these genes encode proteins important for translation termination or specific protein-trafficking complexes. Subsequent inspection of the physical and genetic interactions of the remaining gentamicin-sensitive mutants revealed a network centered on chitin synthase and the Arf GTPases. Further analysis has demonstrated that some conditional arf1 and gea1 alleles make cells hypersensitive to gentamicin under permissive conditions. These results suggest that one consequence of gentamicin exposure is disruption of Arf-dependent protein trafficking.
Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , Gentamicinas/farmacología , Inhibidores de la Síntesis de la Proteína/farmacología , Transporte de Proteínas/efectos de los fármacos , Proteínas de Saccharomyces cerevisiae/metabolismo , Factor 1 de Ribosilacion-ADP/genética , Factor 1 de Ribosilacion-ADP/metabolismo , Factores de Ribosilacion-ADP/genética , Animales , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Transporte de Proteínas/genética , Ratas , Proteínas de Saccharomyces cerevisiae/genéticaRESUMEN
Ubiquitination plays an important role in many cellular processes and is implicated in many diseases. Experimental identification of ubiquitination sites is challenging due to rapid turnover of ubiquitinated proteins and the large size of the ubiquitin modifier. We identified 141 new ubiquitination sites using a combination of liquid chromatography, mass spectrometry, and mutant yeast strains. Investigation of the sequence biases and structural preferences around known ubiquitination sites indicated that their properties were similar to those of intrinsically disordered protein regions. Using a combined set of new and previously known ubiquitination sites, we developed a random forest predictor of ubiquitination sites, UbPred. The class-balanced accuracy of UbPred reached 72%, with the area under the ROC curve at 80%. The application of UbPred showed that high confidence Rsp5 ubiquitin ligase substrates and proteins with very short half-lives were significantly enriched in the number of predicted ubiquitination sites. Proteome-wide prediction of ubiquitination sites in Saccharomyces cerevisiae indicated that highly ubiquitinated substrates were prevalent among transcription/enzyme regulators and proteins involved in cell cycle control. In the human proteome, cytoskeletal, cell cycle, regulatory, and cancer-associated proteins display higher extent of ubiquitination than proteins from other functional categories. We show that gain and loss of predicted ubiquitination sites may likely represent a molecular mechanism behind a number of disease-associatedmutations. UbPred is available at http://www.ubpred.org.
Asunto(s)
Proteoma/análisis , Proteínas de Saccharomyces cerevisiae/análisis , Saccharomyces cerevisiae/metabolismo , Proteínas Ubiquitinadas/análisis , Secuencia de Aminoácidos , Bases de Datos de Proteínas , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Humanos , Espectrometría de Masas , Datos de Secuencia Molecular , Proteoma/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Análisis de Secuencia de Proteína , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Proteínas Ubiquitinadas/metabolismo , UbiquitinaciónRESUMEN
One of the several still unexplained aspects of the mechanism by which the Cdc34/SCF RING-type ubiquitin ligases work is the marked stimulation of Cdc34 autoubiquitination, a phenomenon of unknown mechanism and significance. In in vitro experiments with single-lysine-containing Cdc34 mutant proteins of Saccharomyces cerevisiae, we found that the SCF-mediated stimulation of autoubiquitination is limited to specific N-terminal lysines modified via an intermolecular mechanism. In a striking contrast, SCF quenches autoubiquitination of C-terminal lysines catalyzed in an intramolecular manner. Unlike autoubiquitination of the C-terminal lysines, which has no functional consequence, autoubiquitination of the N-terminal lysines inhibits Cdc34. This autoinhibitory mechanism plays a nonessential role in the catalytic cycle, as the lysineless (K0)Cdc34(DeltaC) is indistinguishable from Cdc34(DeltaC) in ubiquitination of the prototype SCF(Cdc4) substrate Sic1 in vitro, and replacement of the CDC34 gene with either the (K0)cdc34(DeltaC) or the cdc34(DeltaC) allele in yeast has no cell cycle phenotype. We discuss the implications of these findings for the mechanism of Cdc34 function with SCF.
Asunto(s)
Regulación hacia Abajo/genética , Proteínas Ligasas SKP Cullina F-box/metabolismo , Saccharomyces cerevisiae/enzimología , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ubiquitina/metabolismo , Ciclosoma-Complejo Promotor de la Anafase , Sitios de Unión , Catálisis , Lisina/metabolismo , Regiones Promotoras Genéticas/genética , Estructura Secundaria de Proteína , Proteínas Recombinantes/aislamiento & purificación , Proteínas de Saccharomyces cerevisiae , Enzimas Ubiquitina-Conjugadoras , Complejos de Ubiquitina-Proteína Ligasa/química , Complejos de Ubiquitina-Proteína Ligasa/genética , Complejos de Ubiquitina-Proteína Ligasa/aislamiento & purificaciónRESUMEN
A myriad of stimuli including proinflammatory cytokines, viruses, and chemical and mechanical insults activate a kinase complex composed of IkappaB kinase beta (IKK-beta), IKK-alpha, and IKK-gamma/N, leading to changes in NF-kappaB-dependent gene expression. However, it is not clear how the NF-kappaB response is tailored to specific cellular insults. Signaling molecule that interacts with mouse pelle-like kinase (SIMPL) is a signaling component required for tumor necrosis factor alpha (TNF-alpha)-dependent but not interleukin-1-dependent NF-kappaB activation. Herein we demonstrate that nuclear localization of SIMPL is required for type I TNF receptor-induced NF-kappaB activity. SIMPL interacts with nuclear p65 in a TNF-alpha-dependent manner to promote endogenous NF-kappaB-dependent gene expression. The interaction between SIMPL and p65 enhances p65 transactivation activity. These data support a model in which TNF-alpha activation of NF-kappaB dependent-gene expression requires nuclear relocalization of p65 as well as nuclear relocalization of SIMPL, generating a TNF-alpha-specific induction of gene expression.
Asunto(s)
Proteínas Portadoras/metabolismo , FN-kappa B/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Secuencia de Aminoácidos , Animales , Proteínas Potenciadoras de Unión a CCAAT/genética , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Proteínas Portadoras/química , Proteínas Portadoras/genética , Línea Celular , Núcleo Celular/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular , Ratones , Datos de Secuencia Molecular , Complejos Multiproteicos , FN-kappa B/agonistas , FN-kappa B/química , Señales de Localización Nuclear/química , Estructura Terciaria de Proteína , Transporte de Proteínas , Proteínas Proto-Oncogénicas c-jun/genética , Proteínas Proto-Oncogénicas c-jun/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Factor de Transcripción ReIA , Activación TranscripcionalRESUMEN
[This corrects the article DOI: 10.1186/1747-1028-6-7.].
RESUMEN
Significant insight into the signaling pathways leading to activation of the Rel transcription factor family, collectively termed NF-κB, has been gained. Less well understood is how subsets of NF-κB-dependent genes are regulated in a signal specific manner. The SIMPL protein (signaling molecule that interacts with mouse pelle-like kinase) is required for full Tumor Necrosis Factor-α (TNFα) induced NF-κB activity. We show that SIMPL is required for steady-state hematopoiesis and the expression of a subset of TNFα induced genes whose products regulate hematopoietic cell activity. To gain insight into the mechanism through which SIMPL modulates gene expression we focused on the Tnf gene, an immune response regulator required for steady-state hematopoiesis. In response to TNFα SIMPL localizes to the Tnf gene promoter where it modulates the initiation of Tnf gene transcription. SIMPL binding partners identified by mass spectrometry include proteins involved in transcription and the interaction between SIMPL and MED1 was characterized in more detail. In response to TNFα, SIMPL is found in p65-MED1 complexes where SIMPL enhances p65/MED1/SIMPL complex formation. Together our results indicate that SIMPL functions as a TNFα-dependent p65 co-activator by facilitating the recruitment of MED1 to p65 containing transcriptional complexes to control the expression of a subset of TNFα-induced genes.
Asunto(s)
Proteínas Portadoras/fisiología , Subunidad 1 del Complejo Mediador/metabolismo , Factor de Transcripción ReIA/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Regulación de la Expresión Génica , Células HEK293 , Hematopoyesis , Células Madre Hematopoyéticas , Humanos , Péptidos y Proteínas de Señalización Intracelular , Ratones , Complejos Multiproteicos/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Regiones Promotoras Genéticas , Transporte de Proteínas , Transcriptoma , Factor de Necrosis Tumoral alfa/genéticaRESUMEN
Cell division is controlled in part by the timely activation of the CDK, Cdc28, through its association with G1 and G2 cyclins. Cdc28 complexes are regulated in turn by the ubiquitin conjugating enzyme Cdc34 and SCF ubiquitin ligase complexes of the ubiquitin-proteasome system (UPS) to control the initiation of DNA replication. Here we demonstrate that the nutrient sensing kinases PKA and Sch9 phosphorylate S97 of Cdc34. S97 is conserved across species and restricted to the catalytic domain of Cdc34/Ubc7-like E2s. Cdc34-S97 phosphorylation is cell cycle regulated, elevated during active cell growth and division and decreased during cell cycle arrest. Cell growth and cell division are orchestrated to maintain cell size homeostasis over a wide range of nutrient conditions. Cells monitor changes in their environment through nutrient sensing protein kinases. Thus Cdc34 phosphorylation by PKA and Sch9 provides a direct tether between G1 cell division events and cell growth.
Asunto(s)
Dominio Catalítico , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Alimentos , Proteínas Quinasas/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ciclosoma-Complejo Promotor de la Anafase , Animales , Ciclo Celular/fisiología , División Celular , Tamaño de la Célula , Humanos , Fosforilación , Especificidad de la Especie , Enzimas Ubiquitina-Conjugadoras , Complejos de Ubiquitina-Proteína Ligasa/químicaRESUMEN
The Cdc34 ubiquitin-conjugating enzyme plays a central role in progression of the cell cycle. Through analysis of the phenotype of a mutant missing a highly conserved sequence motif within the catalytic domain of Cdc34, we discovered previously unrecognized levels of regulation of the Ace2 transcription factor and the cyclin-dependent protein kinase inhibitor Sic1. In cells carrying the Cdc34(tm) mutation, which alters the conserved sequence, the cyclin-dependent protein kinase inhibitor Sic1, an SCF(Cdc4) substrate, has a shorter half-life, while the cyclin Cln1, an SCF(Grr1) substrate, has a longer half-life than in wild-type cells. Expression of the SIC1 gene cluster, which is regulated by Swi5 and Ace2 transcription factors, is induced in CDC34(tm) cells. Levels of Swi5, Ace2, and the SCF(Grr1) targets Cln1 and Cln2 are elevated in Cdc34(tm) cells, and loss of Grr1 causes an increase in Ace2 levels. Sic1 levels are similar in CDC34(tm) ace2Δ and wild-type cells, explaining a paradoxical increase in the steady-state level of Sic1 protein despite its reduced half-life. A screen for mutations that interact with CDC34(tm) uncovered novel regulators of Sic1, including genes encoding the polyubiquitin chain receptors Rad23 and Rpn10.
Asunto(s)
Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/genética , Peptidil-Dipeptidasa A/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Complejos de Ubiquitina-Proteína Ligasa/genética , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Ciclosoma-Complejo Promotor de la Anafase , Enzima Convertidora de Angiotensina 2 , Ciclo Celular/genética , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/metabolismo , Genes Sintéticos , Semivida , Datos de Secuencia Molecular , Peptidil-Dipeptidasa A/metabolismo , Poliubiquitina/metabolismo , Conformación Proteica , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Enzimas Ubiquitina-Conjugadoras , Complejos de Ubiquitina-Proteína Ligasa/química , Complejos de Ubiquitina-Proteína Ligasa/metabolismoRESUMEN
BACKGROUND: The S73/S97/loop motif is a hallmark of the Cdc34 family of E2 ubiquitin-conjugating enzymes that together with the SCF E3 ubiquitin ligases promote degradation of proteins involved in cell cycle and growth regulation. The inability of the loop-less Δ12Cdc34 mutant to support growth was linked to its inability to catalyze polyubiquitination. However, the loop-less triple mutant (tm) Cdc34, which not only lacks the loop but also contains the S73K and S97D substitutions typical of the K73/D97/no loop motif present in other E2s, supports growth. Whether tmCdc34 supports growth despite defective polyubiquitination, or the S73K and S97D substitutions, directly or indirectly, correct the defect caused by the loop absence, are unknown. RESULTS: tmCdc34 supports yeast viability with normal cell size and cell cycle profile despite producing fewer polyubiquitin conjugates in vivo and in vitro. The in vitro defect in Sic1 substrate polyubiquitination is similar to the defect observed in reactions with Δ12Cdc34 that cannot support growth. The synthesis of free polyubiquitin by tmCdc34 is activated only modestly and in a manner dependent on substrate recruitment to SCFCdc4. Phosphorylation of C-terminal serines in tmCdc34 by Cka2 kinase prevents the synthesis of free polyubiquitin chains, likely by promoting their attachment to substrate. Nevertheless, tmCDC34 yeast are sensitive to loss of the Ubp14 C-terminal ubiquitin hydrolase and DUBs other than Ubp14 inefficiently disassemble polyubiquitin chains produced in tmCDC34 yeast extracts, suggesting that the free chains, either synthesized de novo or recycled from substrates, have an altered structure. CONCLUSIONS: The catalytic motif replacement compromises polyubiquitination activity of Cdc34 and alters its regulation in vitro and in vivo, but either motif can support Cdc34 function in yeast viability. Robust polyubiquitination mediated by the S73/S97/loop motif is thus not necessary for Cdc34 role in yeast viability, at least under typical laboratory conditions.
RESUMEN
OBJECTIVE: Emerging work has revealed an integral role of the tumor necrosis factor-alpha (TNF-alpha) nuclear factor (NF)-kappaB pathway in the regulation of hematopoiesis. TNF-alpha inhibition of hematopoietic stem/progenitor cell growth involves type I TNF-alpha receptor (TNF-RI) and type II TNF-alpha receptor (TNF-RII). However, the role of TNF-RI vs TNF-RII in mediating this response is less clear. Full induction of NF-kappaB-dependent gene expression through TNF-RI requires the transcriptional coactivator SIMPL (substrate that interacts with mouse pelle-like kinase). To address the role of SIMPL in TNF-alpha-dependent signaling in hematopoiesis, endothelial cells and hematopoietic progenitors expressing SIMPL short hairpin RNA were characterized. MATERIAL AND METHODS: In vitro gene expression and progenitor assays employing SIMPL short hairpin RNA were used to examine the requirement for SIMPL in TNF-alpha-dependent effects upon cytokine gene expression and hematopoietic progenitor cell growth. Competitive repopulation studies were used to extend these studies in vivo. RESULTS: SIMPL is required for full TNF-RI-dependent expression of NF-kappaB-controlled cytokines in endothelial cells. Hematopoietic progenitor cell expansion is not affected if progenitors lacked SIMPL or if progenitors are treated with human TNF-alpha, which signals through TNF-RI. In the absence of SIMPL, human TNF-alpha leads to a dramatic decrease in progenitor cell expansion that is not due to apoptosis. Loss of SIMPL does not affect the activity of transforming growth factor-beta1 and interferon-gamma, other known suppressors of hematopoiesis. CONCLUSIONS: Suppression of myeloid progenitor cell expansion requires signaling through TNF-RI and TNF-RII. Signals transduced through the TNF-alpha-TNF-RI-SIMPL pathway support hematopoietic progenitor cell survival, growth and differentiation.
Asunto(s)
Proteínas Portadoras/fisiología , Supervivencia Celular , Células Madre Hematopoyéticas/fisiología , Factor de Necrosis Tumoral alfa/farmacología , Animales , Apoptosis , Células de la Médula Ósea/química , Células de la Médula Ósea/metabolismo , Proteínas Portadoras/análisis , Proteínas Portadoras/genética , Diferenciación Celular , División Celular , Línea Celular , Embrión de Mamíferos , Células Endoteliales/metabolismo , Femenino , Fibroblastos/química , Fibroblastos/metabolismo , Expresión Génica/efectos de los fármacos , Células Progenitoras de Granulocitos y Macrófagos/citología , Células Progenitoras de Granulocitos y Macrófagos/fisiología , Hematopoyesis/efectos de los fármacos , Hematopoyesis/fisiología , Células Madre Hematopoyéticas/química , Células Madre Hematopoyéticas/citología , Humanos , Péptidos y Proteínas de Señalización Intracelular , Secuencias Invertidas Repetidas , Riñón , Ratones , Ratones Endogámicos C57BL , FN-kappa B/fisiología , ARN/genética , ARN Mensajero/análisis , Receptores del Factor de Necrosis Tumoral/fisiología , Proteínas Recombinantes/farmacología , Transducción de Señal , TransfecciónRESUMEN
The transcription factor NF-kappaB is an essential regulator of the innate immune response that functions as the first line of defense against infections. Activation of the innate immune response by bacterial lipopolysaccharide (LPS) triggers production of tumor necrosis factor-alpha (TNF-alpha) followed by interleukin-1 (IL-1). The IL-1 receptor associated kinase-1 (IRAK-1) is an integral component of the LPS, TNF-alpha, and IL-1 signaling pathways that regulate NF-kappaB. Thus we hypothesized that IRAK-1 coordinates cellular NF-kappaB responses to LPS, TNF-alpha, and IL-1. In contrast to TNF-alpha where IRAK-1 subcellular localization does not change, treatment with LPS or IL-1 leads to a loss in cytoplasmic IRAK-1 with a coordinate increase in plasma membrane associated modified IRAK-1. In fibroblasts lacking the type 1 TNF-alpha receptor (TNF R1), IRAK-1 turnover is altered and modification of IRAK-1 in the plasma membrane is decreased in response to LPS and IL-1, respectively. When NF-kappaB controlled gene expression is measured, fibroblasts lacking TNF R1 are hyperresponsive to LPS, whereas a more variable response to IL-1 is seen. Further analysis of the LPS response revealed that plasma membrane-associated IRAK-1 is found in Toll 4, IL-1, and TNF R1-containing complexes. The data presented herein suggest a model whereby the TNF R1-IRAK-1 interaction integrates the cellular response to LPS, TNF-alpha, and IL-1, culminating in a cell poised to activate TNF-alpha-dependent NF-kappaB controlled gene expression. In the absence of TNF R1-dependent events, exposure to LPS or IL-1 leads to hyperactivation of the inflammatory response.
Asunto(s)
Quinasas Asociadas a Receptores de Interleucina-1/metabolismo , Interleucina-1beta/farmacología , Lipopolisacáridos/farmacología , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Transducción de Señal/fisiología , Animales , Membrana Celular/metabolismo , Células Cultivadas , Quimiocina CCL2/metabolismo , Citosol/metabolismo , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Expresión Génica/efectos de los fármacos , Proteínas I-kappa B/genética , Proteínas I-kappa B/metabolismo , Proteína Accesoria del Receptor de Interleucina-1/metabolismo , Quinasas Asociadas a Receptores de Interleucina-1/genética , Interleucina-6/genética , Interleucina-6/metabolismo , Leupeptinas/farmacología , Ratones , Ratones Noqueados , Factor 88 de Diferenciación Mieloide/metabolismo , Inhibidor NF-kappaB alfa , FN-kappa B/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma , Unión Proteica/efectos de los fármacos , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Transducción de Señal/efectos de los fármacos , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/farmacología , Ubiquitinación/efectos de los fármacosRESUMEN
Epidemiological data have implicated perturbations in the regulation of NF-kappaB activity to diseases that affect a large number of Americans today. Specifically, chronic activation of genes involved in the inflammatory response is associated with the progression of and complications in diabetes, arthritis, atherosclerosis, and cancer. Insight into the mechanisms governing the regulation of NF-kappaB transcriptional activity will provide the molecular link between NF-kappaB and these pathological states. SIMPL (signaling molecule that associates with mouse Pelle-like kinase) is a component of a signaling pathway through which tumor necrosis factor-alpha (TNF-alpha) induces NF-kappaB-controlled gene transcription. SIMPL interacts with the nuclear pool of the NF-kappaB subunit, p65, in a TNF-alpha-dependent manner to enhance p65-dependent gene transcription. How SIMPL activity is regulated is unknown. Under basal as well as TNF-alpha-stimulated conditions, SIMPL phosphopeptides were identified. SIMPL mutants lacking sites that are phosphorylated under basal conditions diminished p65 transactivation activity but had no effect on SIMPL nuclear localization. SIMPL mutants lacking sites of TNF-alpha-enhanced phosphorylation impaired nuclear localization and prevented TNF-alpha-induced p65 transactivation activity. Together, these studies reveal that phosphorylation of the SIMPL protein plays a critical role in SIMPL regulation by affecting both SIMPL subcellular localization and the p65 coactivator function of SIMPL.
Asunto(s)
Riñón/metabolismo , Ligasas/metabolismo , FN-kappa B/metabolismo , Transducción de Señal/fisiología , Factor de Transcripción ReIA/metabolismo , Transcripción Genética/fisiología , Factor de Necrosis Tumoral alfa/farmacología , Proteínas Portadoras , Línea Celular , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/fisiología , Humanos , Péptidos y Proteínas de Señalización Intracelular , Riñón/efectos de los fármacos , Fosforilación/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Transcripción Genética/efectos de los fármacosRESUMEN
In vivo bioluminescence imaging is becoming a very important tool for the study of a variety of cellular and molecular events or disease processes in living systems. In vivo bioluminescence imaging is based on the detection of light emitted from within an animal. The light is generated as a product of the luciferase-luciferin reaction taking place in a cell. In this study, we implanted mice with tumour cells expressing either a high or a low level of luciferase. In vivo bioluminescence imaging was used to follow tumour progression. Repeated luciferin injection and imaging of high and low luciferase-expressing tumours was performed. While low luciferase-expressing tumours grew similarly to vector controls, growth of the high luciferase-expressing tumours was severely inhibited. The observation that a high level of luciferase expression will inhibit tumour cell growth when an animal is subjected to serial in vivo bioluminescence imaging is potentially an important factor in designing these types of studies.
Asunto(s)
División Celular , Luciferasas/metabolismo , Mediciones Luminiscentes/métodos , Neoplasias Experimentales/enzimología , Animales , Femenino , Ratones , Ratones Desnudos , Trasplante de Neoplasias , Neoplasias Experimentales/patologíaRESUMEN
The pro-inflammatory cytokines, Tumor Necrosis Factor-alpha (TNFalpha) and Interleukin-1 (IL-1) mediate the innate immune response. Dysregulation of the innate immune response contributes to the pathogenesis of cancer, arthritis, and congestive heart failure. TNFalpha- and IL-1-induced changes in gene expression are mediated by similar transcription factors; however, TNFalpha and IL-1 receptor knock-out mice differ in their sensitivities to a known initiator (lipopolysaccharide, LPS) of the innate immune response. The contrasting responses to LPS indicate that TNFalpha and IL-1 regulate different processes. A large-scale proteomic analysis of TNFalpha- and IL-1-induced responses was undertaken to identify processes uniquely regulated by TNFalpha and IL-1. When combined with genomic studies, our results indicate that TNFalpha, but not IL-1, mediates cell cycle arrest.
Asunto(s)
Genómica , Interleucina-1/farmacología , Proteómica , Factor de Necrosis Tumoral alfa/farmacología , Ciclo Celular/efectos de los fármacos , Línea Celular , Permeabilidad de la Membrana Celular/efectos de los fármacos , Citoplasma/efectos de los fármacos , Citoplasma/genética , Citoplasma/metabolismo , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Membranas Mitocondriales/efectos de los fármacos , Proteínas/análisis , Proteínas/genética , ARN Mensajero/análisis , Transcripción Genética/efectos de los fármacosRESUMEN
Gentamicin continues to be a primary antibiotic against gram-negative infections. Unfortunately, associated nephro- and ototoxicity limit its use. Our previous mammalian studies showed that gentamicin is trafficked to the endoplasmic reticulum in a retrograde manner and subsequently released into the cytosol. To better dissect the mechanism through which gentamicin induces toxicity, we have chosen to study its toxicity using the simple eukaryote Saccharomyces cerevisiae. A recent screen of the yeast deletion library identified multiple gentamicin-sensitive strains, many of which participate in intracellular trafficking. Our approach was to evaluate gentamicin sensitivity under logarithmic growth conditions. By quantifying growth inhibition in the presence of gentamicin, we determined that several of the sensitive strains were part of the Golgi-associated retrograde protein (GARP) and homotypic fusion and vacuole protein sorting (HOPS) complexes. Further evaluation of their other components showed that the deletion of any GARP member resulted in gentamicin-hypersensitive strains, while the deletion of other HOPS members resulted in less gentamicin sensitivity. Other genes whose deletion resulted in gentamicin hypersensitivity included ZUO1, SAC1, and NHX1. Finally, we utilized a Texas Red gentamicin conjugate to characterize gentamicin uptake and localization in both gentamicin-sensitive and -insensitive strains. These studies were consistent with our mammalian studies, suggesting that gentamicin toxicity in yeast results from alterations to intracellular trafficking pathways. The identification of genes whose absence results in gentamicin toxicity will help target specific pathways and mechanisms that contribute to gentamicin toxicity.
Asunto(s)
Antibacterianos/farmacología , Proteínas de Transporte de Catión/metabolismo , Gentamicinas/toxicidad , Aparato de Golgi/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Intercambiadores de Sodio-Hidrógeno/metabolismo , Proteínas de Transporte de Catión/análisis , Proteínas de Unión al ADN/metabolismo , Proteínas de la Membrana/metabolismo , Chaperonas Moleculares , Transporte de Proteínas/efectos de los fármacos , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/análisis , Intercambiadores de Sodio-Hidrógeno/análisis , Proteínas de Transporte Vesicular/metabolismoRESUMEN
OBJECTIVE: The intracellular redox state plays an important role in controlling inflammation. Clinical and laboratory data suggest that inflammation can lead to tumor progression. We hypothesized that restoring intracellular redox control would inhibit inflammation and subsequently tumor progression. Our studies were designed to investigate the effect of alpha-lipoic acid (ALA), a naturally occurring antioxidant, on a key inflammatory signaling pathway and cell proliferation in normal and tumorigenic ovarian surface epithelial cells. METHODS: Normal and tumorigenic ovarian surface epithelial cells were isolated as described by Roby and coworkers [Roby KF, Taylor CC, Sweetwood JP, Cheng Y, Pace JL, Tawpik O, Persons DL, Smith PG, Terranova PF, Development of a syngeneic mouse model for events related to ovarian cancer. Carcinogen 2000;21 (4):585. [1]]. The effect of ALA on cellular function was measured in cell proliferation and apoptosis assays. p27(kip1) protein levels were measured by Western analysis. Activation of NF-kappaB dependent transcription was assessed in cell cultures transiently transfected with NF-kappaB controlled reporter constructs. RESULTS: Our results reveal that ALA selectively inhibits the growth of tumorigenic as compared to non-tumorigenic ovarian surface epithelial cells. The growth inhibitory effect of ALA is not due to induction of apoptosis but instead is associated with an increase in the half-life of the cyclin-dependent kinase inhibitor, p27(kip1). In parallel to the growth inhibitory effect, ALA also affects a key inflammatory signaling pathway by inhibiting TNFalpha-induced NF-kappaB signaling activity. CONCLUSIONS: Our studies are the first to show that ALA treatment has a growth inhibitory effect on malignant surface epithelial cells of ovarian origin. We have also confirmed the reproducibility of the immunocompetent mouse ovarian cancer model originally described by Roby and coworkers [Roby KF, Taylor CC, Sweetwood JP, Cheng Y, Pace JL, Tawpik O, Persons DL, Smith PG, Terranova PF, Development of a syngeneic mouse model for events related to ovarian cancer. Carcinogen 2000;21 (4):585].
Asunto(s)
Células Epiteliales/efectos de los fármacos , Neoplasias Ováricas/tratamiento farmacológico , Ácido Tióctico/farmacología , Animales , Apoptosis/efectos de los fármacos , Procesos de Crecimiento Celular/efectos de los fármacos , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Modelos Animales de Enfermedad , Células Epiteliales/citología , Células Epiteliales/metabolismo , Células Epiteliales/patología , Femenino , Ratones , Ratones Endogámicos C57BL , FN-kappa B/antagonistas & inhibidores , FN-kappa B/metabolismo , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Ovario/citología , Ovario/efectos de los fármacos , Ovario/metabolismo , Células Tumorales Cultivadas , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Factor de Necrosis Tumoral alfa/metabolismoRESUMEN
The presence of the appropriate pheromone induces alpha and a cells of the yeast Saccharomyces cerevisiae to activate both changes in transcriptional expression and cell polarity that eventually lead to the mating of alpha and a cells to form a/alpha diploid cells. A third response after exposure to mating pheromone is a transient cell cycle arrest, allowing synchronization of the two cell types in G1 prior to cell fusion. At least in part, this cell cycle arrest requires the inactivation of Cln-kinase activity through transcriptional inactivation of the CLN1 and CLN2 genes, degradation of the Cln proteins and direct inhibition of Cln-kinase complexes. Here we report that GRR1, which encodes a substrate recognition subunit of SCF complexes, is critical for pheromone sensitivity and likely for this arrest. Loss of SCF(Grr1) function by deletion of the GRR1 gene causes pheromone resistance. However, deletion of CLN1 and CLN2 restores pheromone sensitivity to grr1Delta cells. Thus, rapid loss of Cln-kinase activity during mating may require coordinated inactivation of the Cln-kinase complexes, inactivation of CLN transcription and SCF(Grr1)-dependent Cln degradation.
Asunto(s)
Regulación Fúngica de la Expresión Génica , Feromonas/farmacología , Proteínas Ligasas SKP Cullina F-box/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Ubiquitina-Proteína Ligasas/metabolismo , Aminopeptidasas , Ciclo Celular/efectos de los fármacos , Ciclinas/genética , Ciclinas/metabolismo , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas , Endopeptidasas , Proteínas F-Box , Mutación , Péptido Hidrolasas/genética , Péptido Hidrolasas/metabolismo , Proteínas Ligasas SKP Cullina F-box/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiología , Proteínas de Saccharomyces cerevisiae/genética , Serina Proteasas , Tripeptidil Peptidasa 1 , Ubiquitina-Proteína Ligasas/genéticaRESUMEN
In a recent issue of Cell, Hughes and coworkers (Mnaimneh et al., 2004) provide a great leap forward in the analysis of essential yeast genes by constructing a strain set that expresses each essential gene from a tetracycline-regulatable promoter.
Asunto(s)
Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Genes Esenciales , Genes Fúngicos/genética , Regiones Promotoras Genéticas/genética , Inhibidores de la Síntesis de la Proteína/farmacología , Tetraciclina/farmacología , Procesamiento Proteico-Postraduccional , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcripción GenéticaRESUMEN
In Saccharomyces cerevisiae, Rub1p, like ubiquitin, is conjugated to proteins. Before protein conjugation, the carboxyl-terminal asparagine residue of Rub1p is removed. Rub1p conjugation is dependent on the carboxyl-terminal processing enzyme Yuh1p, whereas Rub1p lacking the asparagine residue is conjugated without Yuh1p. Thus, Yuh1p is the major processing enzyme for Rub1p.