Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Dev Dyn ; 253(3): 283-295, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37732630

RESUMEN

BACKGROUND: Although vertebrae are the defining character of vertebrates, they are found only in rudimentary form in extant agnathans. In addition, the vertebrae of agnathans possess several unique features, such as elastin-like molecules as the main matrix component and late (post-metamorphosis) differentiation of lamprey vertebrae. In this study, by tracing the developmental process of vertebrae in lamprey, we examined the homology of vertebrae between lampreys and gnathostomes. RESULTS: We found that the lamprey somite is first subdivided mediolaterally, with myotome cells differentiating medially and non-myotome cells emerging laterally. Subsequently, collagen-positive non-myotome cells surround the myotome. This pattern of somitogenesis is rather similar to that in amphioxi and sheds doubt on the presence of a sclerotome, in terms of mesenchyme cells induced by a signal from the notochord, in lamprey. Further tracing of non-myotome cell development revealed that fin cartilage develops in ammocoete larvae approximately 35 mm in body length. The development of the fin cartilage occurs much earlier than that of the vertebra whose development proceeds during metamorphosis. CONCLUSION: We propose that the homology of vertebrae between agnathans and gnathostomes should be discussed carefully, because the developmental process of the lamprey vertebra is different from that of gnathostomes.


Asunto(s)
Sistema Musculoesquelético , Animales , Columna Vertebral , Esqueleto , Lampreas , Vertebrados
2.
Molecules ; 29(9)2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38731615

RESUMEN

Interaction of the pre-organized complex of iron(II) trimethylacetate and 1,10-phenanthroline (phen) [Fe2(piv)4(phen)2] (1) (piv = (Me)3CCO2-)) with 1,6-diaminohexane (dahx) in anhydrous acetonitrile yielded a 1D coordination polymer [Fe3O(piv)6(dahx)1.5]n (2) and an organic salt of pivalic acid (H2dahx)(piv)2 (3). The structure of the obtained compounds was determined by single-crystal X-ray diffraction analysis. The phase purity of the complexes was determined by powder X-ray diffraction analysis. According to the single-crystal X-ray analysis, coordination polymer 2 is formed due to the binding of a triangular carboxylate core {Fe3(µ3-O)(µ-piv)6} with an aliphatic diamine ligand. Thermal behavior was investigated for compounds 1 and 2 in an argon atmosphere.

3.
Int J Mol Sci ; 24(8)2023 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-37108429

RESUMEN

Bacterial adaptation is regulated at the population level with the involvement of intercellular communication (quorum sensing). When the population density is insufficient for adaptation under starvation, bacteria can adjust it to a quorum level through cell divisions at the expense of endogenous resources. This phenomenon has been described for the phytopathogenic bacterium Pectobacterium atrosepticum (Pba), and it is called, in our study, adaptive proliferation. An important attribute of adaptive proliferation is its timely termination, which is necessary to prevent the waste of endogenous resources when the required level of population density is achieved. However, metabolites that provide the termination of adaptive proliferation remained unidentified. We tested the hypothesis of whether quorum sensing-related autoinducers prime the termination of adaptive proliferation and assessed whether adaptive proliferation is a common phenomenon in the bacterial world. We showed that both known Pba quorum sensing-related autoinducers act synergistically and mutually compensatory to provide the timely termination of adaptive proliferation and formation of cross-protection. We also demonstrated that adaptive proliferation is implemented by bacteria of many genera and that bacteria with similar quorum sensing-related autoinducers have similar signaling backgrounds that prime the termination of adaptive proliferation, enabling the collaborative regulation of this adaptive program in multispecies communities.


Asunto(s)
Bacterias , Regulación Bacteriana de la Expresión Génica , Bacterias/metabolismo , Transducción de Señal , Comunicación Celular , Percepción de Quorum , Proliferación Celular , Proteínas Bacterianas/metabolismo
4.
Int J Mol Sci ; 24(17)2023 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-37686094

RESUMEN

Phytopathogenic microorganisms, being able to cause plant diseases, usually interact with hosts asymptomatically, resulting in the development of latent infections. Knowledge of the mechanisms that trigger a switch from latent to typical, symptomatic infection is of great importance from the perspectives of both fundamental science and disease management. No studies to date have compared, at the systemic molecular level, the physiological portraits of plants when different infection types (typical and latent) are developed. The only phytopathogenic bacterium for which latent infections were not only widely described but also at least fluently characterized at the molecular level is Pectobacterium atrosepticum (Pba). The present study aimed at the comparison of plant transcriptome responses during typical and latent infections caused by Pba in order to identify and then experimentally verify the key molecular players that act as switchers, turning peaceful plant-Pba coexistence into a typical infection. Based on RNA-Seq, we predicted plant cell wall-, secondary metabolism-, and phytohormone-related genes whose products contributed to the development of the disease or provided asymptomatic plant-Pba interactions. By treatment tests, we confirmed that a switch from latent to typical Pba-caused infection is determined by the plant susceptible responses mediated by the joint action of ethylene and jasmonates.


Asunto(s)
Infección Latente , Pectobacterium , Nicotiana , Pectobacterium/genética , Membrana Celular
5.
Int J Mol Sci ; 24(24)2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38139177

RESUMEN

The alternative sigma factor RpoS is considered to be one of the major regulators providing stress resistance and cross-protection in bacteria. In phytopathogenic bacteria, the effects of RpoS have not been analyzed with regard to cross-protection, and genes whose expression is directly or indirectly controlled by RpoS have not been determined at the whole-transcriptome level. Our study aimed to determine RpoS-regulated genes and phenotypes in the phytopathogenic bacterium Pectobacterium atrosepticum. Knockout of the rpoS gene in P. atrosepticum affected the long-term starvation response, cross-protection, and virulence toward plants with enhanced immune status. The whole-transcriptome profiles of the wild-type P. atrosepticum strain and its ΔrpoS mutant were compared under different experimental conditions, and functional gene groups whose expression was affected by RpoS were determined. The RpoS promoter motif was inferred within the promoter regions of the genes affected by rpoS deletion, and the P. atrosepticum RpoS regulon was predicted. Based on RpoS-controlled phenotypes, transcriptome profiles, and RpoS regulon composition, the regulatory role of RpoS in P. atrosepticum is discussed.


Asunto(s)
Proteínas Bacterianas , Pectobacterium , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Transcriptoma , Pectobacterium/metabolismo , Fenotipo , Factor sigma/genética , Factor sigma/metabolismo , Regulación Bacteriana de la Expresión Génica
6.
Ann Bot ; 129(3): 271-286, 2022 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-34417794

RESUMEN

BACKGROUND AND AIMS: Plant diseases caused by Pectobacterium atrosepticum are often accompanied by extensive rot symptoms. In addition, these bacteria are able to interact with host plants without causing disease for long periods, even throughout several host plant generations. There is, to date, no information on the comparative physiology/biochemistry of symptomatic and asymptomatic plant-P. atrosepticum interactions. Typical (symptomatic) P. atrosepticum infections are associated with the induction of plant responses mediated by jasmonates, which are one of the products of the lipoxygenase cascade that gives origin to many other oxylipins with physiological activities. In this study, we compared the functioning of the lipoxygenase cascade following typical and latent (asymptomatic) infections to gain better insight into the physiological basis of the asymptomatic and antagonistic coexistence of plants and pectobacteria. METHODS: Tobacco plants were mock-inoculated (control) or infected with the wild type P. atrosepticum (typical infection) or its coronafacic acid-deficient mutant (latent infection). The expression levels of the target lipoxygenase cascade-related genes were assessed by Illumina RNA sequencing. Oxylipin profiles were analysed by GC-MS. With the aim of revising the incorrect annotation of one of the target genes, its open reading frame was cloned to obtain the recombinant protein, which was further purified and characterized using biochemical approaches. KEY RESULTS: The obtained data demonstrate that when compared to the typical infection, latent asymptomatic P. atrosepticum infection is associated with (and possibly maintained due to) decreased levels of 9-lipoxygenase branch products and jasmonic acid and increased level of cis-12-oxo-10,15-phytodienoic acid. The formation of 9-oxononanoic acid and epoxyalcohols in tobacco plants was based on the identification of the first tobacco hydroperoxide lyase (HPL) with additional epoxyalcohol synthase (EAS) activity. CONCLUSIONS: Our results contribute to the hypothesis of the oxylipin signature, indicating that different types of plant interactions with a particular pathogen are characterized by the different oxylipin profiles of the host plant. In addition, the tobacco LOC107825278 gene was demonstrated to encode an NtHPL (CYP74C43) enzyme yielding volatile aldehydes and aldoacids (HPL products) as well as oxiranyl carbinols (EAS products).


Asunto(s)
Lipooxigenasa , Pectobacterium , Lipooxigenasa/genética , Lipooxigenasa/metabolismo , Pectobacterium/metabolismo , Enfermedades de las Plantas/microbiología , Nicotiana
7.
Int J Mol Sci ; 22(17)2021 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-34502502

RESUMEN

Siderophores produced by microorganisms to scavenge iron from the environment have been shown to contribute to virulence and/or stress resistance of some plant pathogenic bacteria. Phytopathogenic bacteria of Pectobacterium genus possess genes for the synthesis of siderophore enterobactin, which role in plant-pathogen interactions has not been elucidated. In the present study we characterized the phenotype of the mutant strain of Pba deficient for the enterobactin-biosynthetic gene entA. We showed that enterobactin may be considered as a conditionally beneficial virulence factor of Pba. The entA knockout did not reduce Pba virulence on non-primed plants; however, salicylic acid-primed plants were more resistant to ΔentA mutant than to the wild type Pba. The reduced virulence of ΔentA mutant towards the primed plants is likely explained by its compromised resistance to oxidative stress.


Asunto(s)
Enterobactina/genética , Pectobacterium/genética , Enterobactina/metabolismo , Hierro , Estrés Oxidativo , Pectobacterium/metabolismo , Plantas/metabolismo , Sideróforos/genética , Sideróforos/metabolismo , Estrés Fisiológico/fisiología , Virulencia/genética
8.
Int J Mol Sci ; 22(16)2021 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-34445780

RESUMEN

The bacterial pathogen Salmonella enterica, which causes enteritis, has a broad host range and extensive environmental longevity. In water and soil, Salmonella interacts with protozoa and multiplies inside their phagosomes. Although this relationship resembles that between Salmonella and mammalian phagocytes, the interaction mechanisms and bacterial genes involved are unclear. Here, we characterized global gene expression patterns of S. enterica serovar Typhimurium within Acanthamoeba castellanii at the early stage of infection by Cappable-Seq. Gene expression features of S. Typhimurium within A. castellanii were presented with downregulation of glycolysis-related, and upregulation of glyoxylate cycle-related genes. Expression of Salmonella Pathogenicity Island-1 (SPI-1), chemotaxis system, and flagellar apparatus genes was upregulated. Furthermore, expression of genes mediating oxidative stress response and iron uptake was upregulated within A. castellanii as well as within mammalian phagocytes. Hence, global S. Typhimurium gene expression patterns within A. castellanii help better understand the molecular mechanisms of Salmonella adaptation to an amoeba cell and intracellular persistence in protozoa inhabiting water and soil ecosystems.


Asunto(s)
Acanthamoeba castellanii/microbiología , Salmonella typhimurium/genética , Virulencia/genética , Animales , Proteínas Bacterianas/genética , Ecosistema , Regulación Bacteriana de la Expresión Génica/genética , Islas Genómicas/genética , Mamíferos/microbiología
9.
Int J Mol Sci ; 22(16)2021 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-34445356

RESUMEN

Ferritins comprise a conservative family of proteins found in all species and play an essential role in resistance to redox stress, immune response, and cell differentiation. Sponges (Porifera) are the oldest Metazoa that show unique plasticity and regenerative potential. Here, we characterize the ferritins of two cold-water sponges using proteomics, spectral microscopy, and bioinformatic analysis. The recently duplicated conservative HdF1a/b and atypical HdF2 genes were found in the Halisarca dujardini genome. Multiple related transcripts of HpF1 were identified in the Halichondria panicea transcriptome. Expression of HdF1a/b was much higher than that of HdF2 in all annual seasons and regulated differently during the sponge dissociation/reaggregation. The presence of the MRE and HRE motifs in the HdF1 and HdF2 promotor regions and the IRE motif in mRNAs of HdF1 and HpF indicates that sponge ferritins expression depends on the cellular iron and oxygen levels. The gel electrophoresis combined with specific staining and mass spectrometry confirmed the presence of ferric ions and ferritins in multi-subunit complexes. The 3D modeling predicts the iron-binding capacity of HdF1 and HpF1 at the ferroxidase center and the absence of iron-binding in atypical HdF2. Interestingly, atypical ferritins lacking iron-binding capacity were found in genomes of many invertebrate species. Their function deserves further research.


Asunto(s)
Ferritinas/genética , Poríferos/genética , Animales , Secuencia Conservada , Ferritinas/química , Ferritinas/metabolismo , Hierro/metabolismo , Redes y Vías Metabólicas/genética , Modelos Moleculares , Filogenia , Poríferos/clasificación , Poríferos/metabolismo , Dominios Proteicos/genética , Análisis de Secuencia de ADN , Transcriptoma/fisiología
10.
Molecules ; 26(14)2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-34299571

RESUMEN

A series of heterometallic carboxylate 1D polymers of the general formula [LnIIICd2(piv)7(H2O)2]n·nMeCN (LnIII = Sm (1), Eu (2), Tb (3), Dy (4), Ho (5), Er (6), Yb (7); piv = anion of trimethylacetic acid) was synthesized and structurally characterized. The use of CdII instead of ZnII under similar synthetic conditions resulted in the formation of 1D polymers, in contrast to molecular trinuclear complexes with LnIIIZn2 cores. All complexes 1-7 are isostructural. The luminescent emission and excitation spectra for 2-4 have been studied, the luminescence decay kinetics for 2 and 3 was measured. Magnetic properties of the complexes 3-5 and 7 have been studied; 4 and 7 exhibited the properties of field-induced single-molecule magnets in an applied external magnetic field. Magnetic properties of 4 and 7 were modelled using results of SA-CASSCF/SO-RASSI calculations and SINGLE_ANISO procedure. Based on the analysis of the magnetization relaxation and the results of ab initio calculations, it was found that relaxation in 4 predominantly occurred by the sum of the Raman and QTM mechanisms, and by the sum of the direct and Raman mechanisms in the case of 7.

11.
Curr Microbiol ; 77(11): 3538-3545, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32803419

RESUMEN

Lactic acid bacteria are widespread in various ecological niches with the excess of nutrients and have reduced capabilities to adapt to starvation. Among more than 280 Lactobacillus species known to the date, only five, including Lactobacillus hilgardii, carry in their genome the gene encoding for PII-like protein, one of the central regulators of cellular metabolism generally responding to energy- and carbon-nitrogen status in many free-living Bacteria, Archaea and in plant chloroplasts. In contrast to the classical PII encoding genes, in L. hilgardii genome the gene for PII homologue is located within the potABCD operon, encoding the ABC transporter for polyamines. Based on the unique genetic context and low sequence identity with genes of any other so-far characterized PII subfamilies, we termed this gene potN (Pot-protein, Nucleotide-binding). The second specific feature of L. hilgardii genome is that many genes encoding the proteins with similar function are present in two copies, while with low mutual identity. Thus, L. hilgardii LMG 7934 genome carries two genes of glutamine synthetase with 55% identity. One gene is located within classical glnRA operon with the gene of GlnR-like transcriptional regulator, while the second is monocistronic. Together with the relative large genome of L. hilgardii as compared to other Lactobacilli (2.771.862 bp vs ~ 2.2 Mbp in median), these data suggest significant re-arrangements of the genome and a wider range of adaptive capabilities of L. hilgardii in comparison to other bacteria of the genus Lactobacillus.


Asunto(s)
Lactobacillus , Operón , Proteínas Bacterianas/genética , Secuencia de Bases , Lactobacillus/genética
12.
Microb Ecol ; 78(2): 286-298, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30661111

RESUMEN

Ciliates are the largest group of ubiquitous aquatic bacterivorous protists, and many species are easily cultivated. However, only few studies reported prokaryotic communities naturally associated with ciliate cells. Herein, we analyzed the microbiome composition of several strains of Paramecium (Ciliophora) originating from different locations and belonging to two morpho-species by high-throughput sequencing (HTS) of the 16S rRNA gene. Possible reasons of HTS results bias were addressed comparing DNA libraries obtained using different primers and different number of ciliate cells. Microbiomes associated with ciliates and their environments were always significantly different by prokaryotic taxonomic composition and bacterial richness. There were also pronounced differences between Paramecium strains. Interestingly, potentially pathogenic bacteria were revealed in Paramecium microbiomes.


Asunto(s)
Bacterias/aislamiento & purificación , ADN Bacteriano/genética , Microbiota , Paramecium/microbiología , ARN Ribosómico 16S/genética , Bacterias/clasificación , Bacterias/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Filogenia
13.
World J Microbiol Biotechnol ; 35(4): 55, 2019 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-30900049

RESUMEN

Bacteria in natural associations with agricultural crops are promising for use in the improvement of clonal micropropagation of plants. We clarified the taxonomic position of Ochrobactrum cytisi strain IPA7.2 and investigated its tolerance for salinity, high temperature, and glyphosate pollution. We also tested the strain's potential to promote the growth of potato (Solanum tuberosum L.) microplants. Using the IPA7.2 draft genome (no. NZ_MOEC00000000), we searched for housekeeping genes and also for the target genes encoding glyphosate tolerance and plant-growth-promoting ability. A multilocus sequence analysis of the gap, rpoB, dnaK, trpE, aroC, and recA housekeeping genes led us to identify isolate IPA7.2 as O. cytisi. The strain tolerated temperatures up to 50 °C and NaCl concentrations up to 3-4%, and it produced 8 µg ml-1 of indole-3-acetic acid. It also tolerated 6 mM glyphosate owing to the presence of type II 5-enolpyruvylshikimate-3-phosphate synthase. Finally, it was able to colonize the roots and tissues of potato microplants, an ability preserved by several generations after subculturing. We identified the development phase of potato microplants that was optimal for inoculation with O. cytisi IPA7.2. Inoculation of in vitro-grown 15-day-old microplants increased the mitotic index of root meristem cells (by 50%), the length of shoots (by 34%), the number of leaves (by 7%), and the number of roots (by 16%). Under ex vitro conditions, the inoculated plants had a greater leaf area (by 77%) and greater shoot and root dry weight (by 84 and 61%, respectively) than did the control plants. We recommend O. cytisi IPA 7.2 for use in the growing of potato microplants to improve the production of elite seed material.


Asunto(s)
Ochrobactrum/fisiología , Desarrollo de la Planta , Solanum tuberosum/crecimiento & desarrollo , Solanum tuberosum/microbiología , Estrés Fisiológico , Genes Bacterianos/genética , Genes Esenciales/genética , Glicina/efectos adversos , Glicina/análogos & derivados , Ácidos Indolacéticos/metabolismo , Tipificación de Secuencias Multilocus , Ochrobactrum/clasificación , Ochrobactrum/genética , Ochrobactrum/aislamiento & purificación , Filogenia , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/microbiología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/microbiología , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/microbiología , ARN Ribosómico 16S/genética , Salinidad , Tolerancia a la Sal , Cloruro de Sodio , Microbiología del Suelo , Termotolerancia , Glifosato
14.
World J Microbiol Biotechnol ; 35(12): 181, 2019 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-31728652

RESUMEN

Root-associated fungi and bacteria play a pivotal role in the plant-soil ecosystem by influencing both plant growth and immunity. The aim of this study was to unravel the biodiversity of the bacterial and fungal rhizosphere (RS) and rhizoplane (RP) microbiota of Zhukovskij rannij potato (Solanum tuberosum L.) cultivar growing in the Alfisol of Tatarstan, Russia. To assess the structure and diversity of microbial communities, we employed the 16S rRNA and internal transcribed spacer gene library technique. Overall, sequence analysis showed the presence of 3982 bacterial and 188 fungal operational taxonomic units (OTUs) in the RP, and 6018 bacterial and 320 fungal OTUs for in the RS. Comparison between microbial community structures in the RS and RP showed significant differences between these compartments. Biodiversity was higher in the RS than in the RP. Although members of Proteobacteria (RS-59.1 ± 4.9%; RP-54.5 ± 9.2%), Bacteroidetes (RS-23.19 ± 10.2%; RP-34.52 ± 10.4%) and Actinobacteria (RS-11.55 ± 4.9%; RP-7.7 ± 5.1%) were the three most dominant phyla, accounting for 94-98% of all bacterial taxa in both compartments, notable variations were observed in the primary dominance of classes and genera in RS and RP samples. In addition, our results demonstrated that the potato rhizoplane was significantly enriched with the genera Flavobacterium, Pseudomonas, Acinetobacter and other potentially beneficial bacteria. The fungal community was predominantly inhabited by members of the Ascomycota phylum (RS-81.4 ± 8.1%; RP-81.7 ± 5.7%), among which the genera Fusarium (RS-10.34 ± 3.41%; RP-9.96 ± 4.79%), Monographella (RS-7.66 ± 4.43%; RP-9.91 ± 5.87%), Verticillium (RS-4.6 ± 1.43%; RP-8.27 ± 3.63%) and Chaetomium (RS-4.95 ± 2.07%; RP-8.33 ± 4.93%) were particularly abundant. Interestingly, potato rhizoplane was significantly enriched with potentially useful fungal genera, such as Mortierella and Metacordiceps. A comparative analysis revealed that the abundance of Fusarium (a cosmopolitan plant pathogen) varied significantly depending on rotation variants, indicating a possible control of phytopathogenic fungi via management-induced shifts through crop rotational methods. Analysis of the core microbiome of bacterial and fungal community structure showed that the formation of bacterial microbiota in the rhizosphere and rhizoplane is dependent on the host plant.


Asunto(s)
Bacterias/clasificación , Biodiversidad , Hongos/clasificación , Microbiota/fisiología , Raíces de Plantas/microbiología , Suelo/química , Solanum tuberosum/microbiología , Bacterias/genética , Hongos/genética , Microbiota/genética , Filogenia , Desarrollo de la Planta , ARN Ribosómico 16S/genética , Rizosfera , Federación de Rusia , Microbiología del Suelo , Solanum tuberosum/crecimiento & desarrollo
15.
J Basic Microbiol ; 57(12): 998-1009, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29067700

RESUMEN

In the present study, we attempted to elucidate if the harmful phytopathogenic bacteria of Pectobacterium genus (P. atrosepticum) possess the enzymes for oxidation of phenolic compounds. Polyphenol oxidase (laccase) activity was revealed in P. atrosepticum cell lysates. Using bioinformatic analysis, an ORF encoding a putative copper-containing polyphenol oxidase of 241 amino acids with a predicted molecular mass of 25.9 kDa was found. This protein (named Pal1) shares significant level of identity with laccases of a new type described for several bacterial species. Cloning and expression of the pal1 gene and the analysis of corresponding recombinant protein confirmed that Pal1 possessed laccase activity. The recombinant Pal1 protein was characterized in terms of substrate specificity, kinetic parameters, pH and temperature optimum, sensitivity to inhibitors and metal content. Pal1 demonstrated alkali- and thermo-tolerance. The kinetic parameters Km and kcat for 2,6-dimethoxyphenol were 0.353 ± 0.062 mM and 98.79 ± 4.9 s-1 , respectively. The protein displayed high tolerance to sodium azide, sodium fluoride, NaCl, SDS and cinnamic acid. The transcript level of the pal1 gene in P. atrosepticum was shown to be induced by plant-derived phenolic compound (ferulic acid) and copper sulfate.


Asunto(s)
Catecol Oxidasa/genética , Catecol Oxidasa/metabolismo , Pectobacterium/enzimología , Catecol Oxidasa/química , Clonación Molecular , Activadores de Enzimas/análisis , Inhibidores Enzimáticos/análisis , Estabilidad de Enzimas , Concentración de Iones de Hidrógeno , Cinética , Peso Molecular , Pectobacterium/genética , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Temperatura
16.
Cell Rep ; 43(4): 113978, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38522069

RESUMEN

Transcription factor MAFB regulates various homeostatic functions of macrophages. This study explores the role of MAFB in brown adipose tissue (BAT) thermogenesis using macrophage-specific Mafb-deficient (Mafbf/f::LysM-Cre) mice. We find that Mafb deficiency in macrophages reduces thermogenesis, energy expenditure, and sympathetic neuron (SN) density in BAT under cold conditions. This phenotype features a proinflammatory environment that is characterized by macrophage/granulocyte accumulation, increases in interleukin-6 (IL-6) production, and IL-6 trans-signaling, which lead to decreases in nerve growth factor (NGF) expression and reduction in SN density in BAT. We confirm MAFB regulation of IL-6 expression using luciferase readout driven by IL-6 promoter in RAW-264.7 macrophage cell lines. Immunohistochemistry shows clustered organization of NGF-producing cells in BAT, which are primarily TRPV1+ vascular smooth muscle cells, as additionally shown using single-cell RNA sequencing and RT-qPCR of the stromal vascular fraction. Treating Mafbf/f::LysM-Cre mice with anti-IL-6 receptor antibody rescues SN density, body temperature, and energy expenditure.


Asunto(s)
Tejido Adiposo Pardo , Frío , Interleucina-6 , Macrófagos , Factor de Transcripción MafB , Neuronas , Termogénesis , Animales , Factor de Transcripción MafB/metabolismo , Factor de Transcripción MafB/genética , Tejido Adiposo Pardo/metabolismo , Ratones , Macrófagos/metabolismo , Neuronas/metabolismo , Interleucina-6/metabolismo , Células RAW 264.7 , Factor de Crecimiento Nervioso/metabolismo , Metabolismo Energético , Masculino , Ratones Endogámicos C57BL
17.
Biochim Biophys Acta ; 1821(2): 287-94, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22155387

RESUMEN

Enzymes of the CYP74 family (P450 superfamily) play a key role in the plant lipoxygenase signalling cascade. Recently we detected a pathogen inducible divinyl ether synthase (DES) in flax leaves [Chechetkin, Blufard, Hamberg, Grechkin, 2008]. This prompted us to examine the CYP74 genes in the flax leaf transcriptome. Since the flax genome is not sequenced, we used the PCR approach with degenerate primers related to the conserved domains of selected CYP74 genes; this revealed several CYP74 transcripts in flax leaves. One transcript belongs to the previously described allene oxide synthase (LuAOS, CYP74A, GenBank ID: U00428.1). Another one contains the ORF (1473 bp) of an unknown CYP74B16 gene. Three more nearly identical sequences, including one expressed pseudogene, were also identified. The recombinant CYP74B16 protein expressed in Escherichia coli had 491 amino acid residues and MW of 56 kDa. The preferred substrate of this enzyme is the 13-hydroperoxide of α-linolenic acid, and the reaction product was identified by mass spectrometry, NMR and UV spectroscopy as the divinyl ether (9Z,11E)-12-[(1'Z,3'Z)-hexadienyloxy]-9,11-dodecadienoic acid, (ω5Z)-etherolenic acid. All previously known CYP74B subfamily enzymes are hydroperoxide lyases. The novel flax enzyme CYP74B16 (LuDES) is an unprecedented DES member of the CYP74B subfamily.


Asunto(s)
Sistema Enzimático del Citocromo P-450/genética , Lino/enzimología , Lino/genética , Genes de Plantas/genética , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Proteínas de Plantas/genética , Secuencia de Aminoácidos , Secuencia de Bases , Cromatografía Líquida de Alta Presión , Clonación Molecular , Sistema Enzimático del Citocromo P-450/química , Sistema Enzimático del Citocromo P-450/metabolismo , Cartilla de ADN/metabolismo , ADN Complementario/genética , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Concentración de Iones de Hidrógeno , Cinética , Datos de Secuencia Molecular , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Especificidad por Sustrato
18.
Phys Chem Chem Phys ; 15(39): 16725-35, 2013 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-23985972

RESUMEN

Two diterpenoid surfactants with ammonium head groups and bromide (S1) or tosylate (S2) counterions have been synthesized. Exploration of these biomimetic species made it possible to demonstrate that even minor structural changes beyond their chemical nature may dramatically affect their solution behavior. While their aggregation thresholds differ inconsiderably, morphological behavior and affinity to lipid bilayer are strongly dependent on the counterion nature. Compound S2 demonstrates properties of typical surfactants and forms small micelle-like aggregates above critical micelle concentration. For surfactant S1, two critical concentrations and two types of aggregates occur. Structural transitions have been observed between small micelles and aggregates with higher aggregation numbers and hydrodynamic diameter of ca. 150 nm. Unlike S2, surfactant S1 is shown to integrate with liposomes based on dipalmitoylphosphatidylcholine, resulting in a decrease of the temperature of the main phase transition. Both surfactants demonstrate an effective complexation capacity toward oligonucleotide (ONu), which is supported by recharging the surfactant-ONu complexes and the ethidium bromide exclusion at a low N/P ratio. Meanwhile, a very weak complexation of plasmid DNA with the surfactants has been revealed in the gel electrophoresis experiment. The DNA transfer to bacterial cells mediated by the surfactant S1 is shown to depend on the protocol used. In the case of the electroporation, the inhibition of the cell transformation occurs in the presence of the surfactant, while upon the chemical treatment no surfactant effect has been observed. The variability in the morphology, the biocompatibility, the nanoscale dimension and the high binding capacity toward the DNA decamer make it possible to nominate the designed surfactants as promising carriers for biosubstrates or as a helper surfactant for the mixed liposome-surfactant nanocontainers.


Asunto(s)
Materiales Biocompatibles/química , Diterpenos de Tipo Kaurano/química , Tensoactivos/química , 1,2-Dipalmitoilfosfatidilcolina/química , Membrana Dobles de Lípidos/química , Modelos Moleculares , Estructura Molecular , Nanotecnología , Agua/química
19.
Environ Microbiome ; 18(1): 82, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37990336

RESUMEN

BACKGROUND: Cave biotopes are characterized by stable low temperatures, high humidity, and scarcity of organic substrates. Despite the harsh oligotrophic conditions, they are often inhabited by rich microbial communities. Abundant fouling with a wide range of morphology and coloration of colonies covers the walls of the Shulgan-Tash cave in the Southern Urals. This cave is also famous for the unique Paleolithic painting discovered in the middle of the last century. We aimed to investigate the diversity, distribution, and potential impact of these biofilms on the cave's Paleolithic paintings, while exploring how environmental factors influence the microbial communities within the cave. RESULTS: The cave's biofilm morphotypes were categorized into three types based on the ultrastructural similarities. Molecular taxonomic analysis identified two main clusters of microbial communities, with Actinobacteria dominating in most of them and a unique "CaveCurd" community with Gammaproteobacteria prevalent in the deepest cave sections. The species composition of these biofilms reflects changes in environmental conditions, such as substrate composition, temperature, humidity, ventilation, and CO2 content. Additionally, it was observed that cave biofilms contribute to biocorrosion on cave wall surfaces. CONCLUSIONS: The Shulgan-Tash cave presents an intriguing example of a stable extreme ecosystem with diverse microbiota. However, the intense dissolution and deposition of carbonates caused by Actinobacteria pose a potential threat to the preservation of the cave's ancient rock paintings.

20.
Exp Anim ; 72(4): 460-467, 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37183025

RESUMEN

Adeno-associated virus serotype 9 (AAV9) has become a popular tool for gene transfer because of its ability to cross the blood-brain barrier and efficiently transduce genetic material into a variety of cell types. The study utilized GRR (Green-to-Red Reporter) mouse embryos, in which the expression of iCre results in the disappearance of Green Fluorescent Protein (GFP) expression and the detection of Discosoma sp. Red Fluorescent Protein (DsRed) expression by intraplacental injection. Our results demonstrate that AAV9-CMV-iCre can transduce multiple organs in embryos at developmental stages E9.5-E11.5, including the liver, heart, brain, thymus, and intestine. These findings suggest that intraplacental injection of AAV9-CMV-iCre is a viable method for the widespread transduction of GRR mouse embryos.


Asunto(s)
Infecciones por Citomegalovirus , Dependovirus , Ratones , Animales , Dependovirus/genética , Serogrupo , Encéfalo/metabolismo , Barrera Hematoencefálica , Infecciones por Citomegalovirus/metabolismo , Vectores Genéticos , Transducción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA