Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Materials (Basel) ; 17(9)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38730906

RESUMEN

Chromium (Cr) metal has garnered significant attention in alloy systems owing to its exceptional properties, such as a high melting point, low density, and superior oxidation and corrosion resistance. However, its processing capabilities are hindered by its high ductile-brittle transition temperature (DBTT). Recently, powder bed fusion-laser beam for metals (PBF-LB/M) has emerged as a promising technique, offering the fabrication of net shapes and precise control over crystallographic texture. Nevertheless, research investigating the mechanism underlying crystallographic texture development in pure Cr via PBF-LB/M still needs to be conducted. This study explored the impact of scan speed on relative density and crystallographic texture. At the optimal scan speed, an increase in grain size attributed to epitaxial growth was observed, resulting in the formation of a <100> cubic texture. Consequently, a reduction in high-angle grain boundaries (HAGB) was achieved, suppressing defects such as cracks and enhancing relative density up to 98.1%. Furthermore, with increasing densification, Vickers hardness also exhibited a corresponding increase. These findings underscore the efficacy of PBF-LB/M for processing metals with high DBTT properties.

2.
Biomater Adv ; 154: 213633, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37775399

RESUMEN

Postoperative bacterial infection is a serious complication of orthopedic surgery. Not only infections that develop in the first few weeks after surgery but also late infections that develop years after surgery are serious problems. However, the relationship between host bone and infection activation has not yet been explored. Here, we report a novel association between host bone collagen/apatite microstructure and bacterial infection. The bone-mimetic-oriented micro-organized matrix structure was obtained by prolonged controlled cell alignment using a grooved-structured biomedical titanium alloy. Surprisingly, we have discovered that highly aligned osteoblasts have a potent inhibitory effect on Escherichia coli adhesion. Additionally, the oriented collagen/apatite micro-organization of the bone matrix showed excellent antibacterial resistance against Escherichia coli. The proposed mechanism for realizing the antimicrobial activity of the micro-organized bone matrix is by the controlled secretion of the antimicrobial peptides, including ß-defensin 2 and ß-defensin 3, from the highly aligned osteoblasts. Our findings contribute to the development of anti-infective strategies for orthopedic surgeries. The recovery of the intrinsically ordered bone matrix organization provides superior antibacterial resistance after surgery.


Asunto(s)
Infecciones Bacterianas , beta-Defensinas , Humanos , Colágeno/farmacología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Apatitas/química , Escherichia coli
3.
Materials (Basel) ; 14(12)2021 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-34201287

RESUMEN

Ag-containing hydroxyapatite (HA) can reduce risks associated with bacterial infections which may eventually require additional surgical operations to retrieve a failed implant. The biological properties of HA in such applications are strongly affected by its composition in terms of dopants as well as Ca/P stoichiometry, which can be easily controlled by altering processing parameters, such as precursor concentrations. The objective of this in vitro study was to understand the effect of variations in HA precursor solutions on antibacterial properties against Escherichia coli (E. coli) and for promoting osteoblast (bone-forming cell) adhesion on Ag incorporated HA (AgHA) which has not yet been investigated. For this, two groups of AgHAs were synthesized via a precipitation method by adjusting precursor reactants with a stoichiometric value of 1.67, being either (Ca + Ag)/P (Ca-deficient) or Ca/(P + Ag) (P-deficient), and were characterized by XRD, FTIR, and SEM-EDS. Results showed that Ag+ incorporated into the Ca2+ sites was associated with a corresponding OH- vacancy. Additional incorporation of CO32- into PO43- sites occurred specifically for the P-deficient AgHAs. While antibacterial properties increased, osteoblast adhesion decreased with increasing Ag content for the Ca-deficient AgHAs, as anticipated. In contrast, significant antibacterial properties with good osteoblast behavior were observed on the P-deficient AgHAs even with a lower Ag content, owing to carbonated HA. Thus, this showed that by synthesizing AgHA using P-deficient precursors with carbonate substitution, one can keep the antibacterial properties of Ag in HA while reducing its toxic effect on osteoblasts.

4.
Nanoscale ; 12(31): 16596-16604, 2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32756641

RESUMEN

Structural evaluation of ionic additions in calcium phosphates that enhance their performance is a long-lasting area of research in the field of biomedical materials. Ionic incorporation in ß-tricalcium phosphate (ß-TCP) structures is indispensable for obtaining desirable properties for specific functions and applications. Owing to its complex structure and beam-sensitive nature, determining the extent of ion incorporation and its corresponding location in the ß-TCP structure is challenging. Further, very few experimental studies have been able to estimate the location of Ag atoms incorporated in a ß-TCP structure while considering the associated changes in lattice parameters. Although the incorporation alters the lattice parameters, the alteration is not significant enough for estimating the location of the incorporated Ag atoms. Here, Ag incorporation in a ß-TCP structure was evaluated on atomic scale using scanning transmission electron microscopy (STEM). To the best of our knowledge, this is the first report to unambiguously determine the location of the incorporated Ag atoms in the ß-TCP structure by comparing z-contrast profiles of the Ag and Ca atoms by combining the state-of-art STEM observations and STEM image simulations. The Ag incorporation in the Ca(4) sites of ß-TCP, as estimated by the Rietveld refinement, was in good agreement with the high-angle annular dark-field STEM observations and the simulations of the location of Ag atoms for [001] and [010] zone axes.

5.
Mater Sci Eng C Mater Biol Appl ; 77: 556-564, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28532065

RESUMEN

Bacterial infection of implanted materials is a significant complication that might require additional surgical operations for implant retrieval. As an antibacterial biomaterial, Ag-containing hydroxyapatite (HA) may be a solution to reduce the incidences of implant associated infections. In this study, pure, 0.2mol% and 0.3mol% Ag incorporated HA powders were synthesized via a precipitation method. Colloidal precursor dispersions prepared from these powders were used to deposit porous coatings onto titanium and stainless steel substrates via electrostatic spraying. The porous coating layers obtained with various deposition times and heat treatment conditions were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Scratch tests were conducted to assess the adhesion strength of the coating. Antibacterial activity of Ag-incorporated HA was tested towards Escherichia coli (E. coli) at various incubation times. Osteoblast adhesion on Ag-incorporated HA was evaluated to assess biocompatibility. Improvement in adhesion strength of the coating layer was observed after the heat treatment process due to mutual ionic diffusion at the interface. The Ag-incorporated HA killed all viable E. coli after 24h of incubation, whereas no antibacterial activity was detected with pure HA. In addition, in vitro cell culture tests demonstrated osteoblast adhesion similar to pure HA, which indicated good cytocompatibility. In summary, results of this study provided significant promise for the future study of Ag-incorporated HA for numerous medical applications.


Asunto(s)
Plata/química , Adhesivos , Materiales Biocompatibles Revestidos , Durapatita , Escherichia coli , Ensayo de Materiales , Microscopía Electrónica de Rastreo , Titanio , Difracción de Rayos X
6.
Mater Sci Eng C Mater Biol Appl ; 75: 926-933, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28415548

RESUMEN

Development of bioceramics with antibacterial activity and without cytotoxicity would be beneficial for preventing infection associated with implants. This study aimed to capitalize on the antibacterial properties of silver (Ag) incorporated in or coexisting in metallic form with calcium phosphates (CaPs). The in vitro dissolution behavior, antibacterial activity, and cytotoxicity of Ag-containing CaPs with different phase fractions of hydroxyapatite (HA) and ß-tricalcium phosphate (ß-TCP) were evaluated. The antibacterial activity of Ag-containing CaPs depended on the main phase of CaP, the chemical state of Ag, and the amount of incorporated Ag. Superior antibacterial activity was obtained from sustained release of Ag ions through continuous dissolution of Ag-incorporated ß-TCP compared to that obtained for HA coexisting with metallic Ag particles. Ag-containing CaPs did not exhibit any toxic effect on V79 fibroblasts. Thus, these results demonstrated the effectiveness of Ag-incorporated ß-TCP in preventing infection, with respect to long-term applications.


Asunto(s)
Antibacterianos/química , Fosfatos de Calcio/química , Plata/química , Animales , Línea Celular , Cricetulus
7.
Mater Sci Eng C Mater Biol Appl ; 53: 111-9, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26042697

RESUMEN

Ag-containing calcium phosphate (CaP) powders were synthesized by a precipitation method using aqueous solutions of calcium nitrate, silver nitrate, and ammonium phosphate. The powders were sintered at temperatures ranging from 1173 to 1473 K. The charged atomic ratios of (Ca+Ag)/P and Ag/(Ca+Ag) in solution were varied from 1.33 to 1.67 and from 0 to 0.30, respectively. The Ag content in the as-precipitated CaP powders increased with the charged Ag/(Ca+Ag) atomic ratio in solution and was lower than the charged Ag/(Ca+Ag) value. The as-precipitated CaP powders consisted of hydroxyapatite (HA) as the main phase. Ag nanoparticles were observed on the as-precipitated HA particles under all conditions of Ag addition. After the sintering, HA, ß-TCP (tricalcium phosphate), α-TCP, and ß-CPP (calcium pyrophosphate) were mainly detected as CaPs on the basis of the Ca/P atomic ratio of the as-precipitated powders. The addition of Ag stabilized the ß-TCP phase, and the distribution of Ag in ß-TCP was homogeneous. A metallic Ag phase coexisted with HA. The solubility of Ag in HA was estimated to be 0.0019-0.0061 (Ag/(Ca+Ag)) atomic ratio, which was lower than that in ß-TCP (higher than 0.0536) and higher than that of ß-CPP (below the detection limit of analyses).


Asunto(s)
Nanopartículas del Metal/química , Fosfatos/química , Plata/química , Calor , Polvos , Solubilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA