Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Opt Lett ; 46(7): 1582, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33793491

RESUMEN

This publisher's note contains corrections to Opt. Lett.46, 1217 (2021) OPLEDP0146-959210.1364/OL.415229.

2.
Opt Lett ; 46(6): 1217-1220, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33720151

RESUMEN

This Letter presents, to the best of our knowledge, a novel optical configuration for direct time-resolved measurements of luminescence from singlet oxygen, both in solutions and from cultured cells on photodynamic therapy. The system is based on the superconducting single-photon detector, coupled to the confocal scanner that is modified for the near-infrared measurements. The recording of a phosphorescence signal from singlet oxygen at 1270 nm has been done using time-correlated single-photon counting. The performance of the system is verified by measuring phosphorescence from singlet oxygen generated by the photosensitizers commonly used in photodynamic therapy: methylene blue and chlorin e6. The described system can be easily upgraded to the configuration when both phosphorescence from singlet oxygen and fluorescence from the cells can be detected in the imaging mode. Thus, co-localization of the signal from singlet oxygen with the areas inside the cells can be done.


Asunto(s)
Luminiscencia , Imagen Óptica/métodos , Fotones , Oxígeno Singlete
3.
Opt Lett ; 39(6): 1429-32, 2014 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-24690805

RESUMEN

We report on the development of a highly sensitive optical receiver for heterodyne IR spectroscopy at the communication wavelength of 1.5 µm (200 THz) by use of a superconducting hot-electron bolometer. The results are important for the resolution of narrow spectral molecular lines in the near-IR range for the study of astronomical objects, as well as for quantum optical tomography and fiber-optic sensing. Receiver configuration as well as fiber-to-detector light coupling designs are discussed. Light absorption of the superconducting detectors was enhanced by nano-optical antennas, which were coupled to optical fibers. An intermediate frequency (IF) bandwidth of about 3 GHz was found in agreement with measurements at 300 GHz, and a noise figure of about 25 dB was obtained that was only 10 dB above the quantum limit.

4.
Opt Express ; 16(22): 18118-30, 2008 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-18958090

RESUMEN

We consider the use of single-photon counting detectors in coherence-domain imaging. Detectors operated in this mode exhibit reduced noise, which leads to increased sensitivity for weak light sources and weakly reflecting samples. In particular, we experimentally demonstrate the possibility of using superconducting single-photon detectors (SSPDs) for optical coherence-domain reflectometry (OCDR). These detectors are sensitive over the full spectral range that is useful for carrying out such imaging in biological samples. With counting rates as high as 100 MHz, SSPDs also offer a high rate of data acquisition if the light flux is sufficient.

5.
Opt Express ; 14(2): 527-34, 2006 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-19503367

RESUMEN

We have fabricated and tested superconducting single-photon detectors and demonstrated detection efficiencies of 57% at 1550-nm wavelength and 67% at 1064 nm. In addition to the peak detection efficiency, a median detection efficiency of 47.7% was measured over 132 devices at 1550 nm. These measurements were made at 1.8K, with each device biased to 97.5% of its critical current. The high detection efficiencies resulted from the addition of an optical cavity and anti-reflection coating to a nanowire photodetector, creating an integrated nanoelectrophotonic device with enhanced performance relative to the original device. Here, the testing apparatus and the fabrication process are presented. The detection efficiency of devices before and after the addition of optical elements is also reported.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA