Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 182
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Magn Reson Med ; 91(3): 1099-1114, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37997011

RESUMEN

PURPOSE: To evaluate the influence of skeletal maturation on sodium (23 Na) MRI relaxation parameters and the accuracy of tissue sodium concentration (TSC) quantification in human knee cartilage. METHODS: Twelve pediatric knee specimens were imaged with whole-body 10.5 T MRI using a density-adapted 3D radial projection sequence to evaluate 23 Na parameters: B1 + , T1 , biexponential T 2 * $$ {\mathrm{T}}_2^{\ast } $$ , and TSC. Water, collagen, and sulfated glycosaminoglycan (sGAG) content were calculated from osteochondral biopsies. The TSC was corrected for B1 + , relaxation, and water content. The literature-based TSC (TSCLB ) used previously published values for corrections, whereas the specimen-specific TSC (TSCSP ) used measurements from individual specimens. 23 Na parameters were evaluated in eight cartilage compartments segmented on proton images. Associations between 23 Na parameters, TSCLB - TSCSP difference, biochemical content, and age were determined. RESULTS: From birth to 12 years, cartilage water content decreased by 18%; collagen increased by 59%; and sGAG decreased by 36% (all R2 ≥ 0.557). The short T 2 * $$ {\mathrm{T}}_2^{\ast } $$ ( T 2 * S $$ {{\mathrm{T}}_2^{\ast}}_{\mathrm{S}} $$ ) decreased by 72%, and the signal fraction relaxing with T 2 * S $$ {{\mathrm{T}}_2^{\ast}}_{\mathrm{S}} $$ ( fT 2 * S $$ {{\mathrm{fT}}_2^{\ast}}_{\mathrm{S}} $$ ) increased by 55% during the first 5 years but remained relatively stable after that. TSCSP was significantly correlated with sGAG content from biopsies (R2 = 0.739). Depending on age, TSCLB showed higher or lower values than TSCSP . The TSCLB - TSCSP difference was significantly correlated with T 2 * S $$ {{\mathrm{T}}_2^{\ast}}_{\mathrm{S}} $$ (R2 = 0.850), fT 2 * S $$ {{\mathrm{fT}}_2^{\ast}}_{\mathrm{S}} $$ (R2 = 0.651), and water content (R2 = 0.738). CONCLUSION: TSC and relaxation parameters measured with 23 Na MRI provide noninvasive information about changes in sGAG content and collagen matrix during cartilage maturation. Cartilage TSC quantification assuming fixed relaxation may be feasible in children older than 5 years.


Asunto(s)
Cartílago Articular , Cartílago , Humanos , Niño , Preescolar , Imagen por Resonancia Magnética/métodos , Sodio , Colágeno , Agua , Cartílago Articular/diagnóstico por imagen
2.
J Magn Reson Imaging ; 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38703134

RESUMEN

BACKGROUND: Cartilage T2 can detect joints at risk of developing osteoarthritis. The quantitative double-echo steady state (qDESS) sequence is attractive for knee cartilage T2 mapping because of its acquisition time of under 5 minutes. Understanding the reproducibility errors associated with qDESS T2 is essential to profiling the technical performance of this biomarker. PURPOSE: To examine the combined acquisition and segmentation reproducibility of knee cartilage qDESS T2 using two different regional analysis schemes: 1) manual segmentation of subregions loaded during common activities and 2) automatic subregional segmentation. STUDY TYPE: Prospective. SUBJECTS: 11 uninjured participants (age: 28 ± 3 years; 8 (73%) female). FIELD STRENGTH/SEQUENCE: 3-T, qDESS. ASSESSMENT: Test-retest T2 maps were acquired twice on the same day and with a 1-week interval between scans. For each acquisition, average cartilage T2 was calculated in four manually segmented regions encompassing tibiofemoral contact areas during common activities and 12 automatically segmented regions from the deep-learning open-source framework for musculoskeletal MRI analysis (DOSMA) encompassing medial and lateral anterior, central, and posterior tibiofemoral regions. Test-retest T2 values from matching regions were used to evaluate reproducibility. STATISTICAL TESTS: Coefficients of variation (%CV), root-mean-square-average-CV (%RMSA-CV), and intraclass correlation coefficients (ICCs) assessed test-retest T2 reproducibility. The median of test-retest standard deviations was used for T2 precision. Bland-Altman (BA) analyses examined test-retest biases. The smallest detectable difference (SDD) was defined as the BA limit of agreement of largest magnitude. Significance was accepted for P < 0.05. RESULTS: All cartilage regions across both segmentation schemes demonstrated intraday and interday qDESS T2 CVs and RMSA-CVs of ≤5%. T2 ICC values >0.75 were observed in the majority of regions but were more variable in interday tibial comparisons. Test-retest T2 precision was <1.3 msec. The T2 SDD was 3.8 msec. DATA CONCLUSION: Excellent CV and RMSA-CV reproducibility may suggest that qDESS T2 increases or decreases >5% (3.8 msec) could represent changes to cartilage composition. TECHNICAL EFFICACY: Stage 2.

3.
Skeletal Radiol ; 2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38492029

RESUMEN

Musculoskeletal (MSK) disorders are associated with large impacts on patient's pain and quality of life. Conventional morphological imaging of tissue structure is limited in its ability to detect pain generators, early MSK disease, and rapidly assess treatment efficacy. Positron emission tomography (PET), which offers unique capabilities to evaluate molecular and metabolic processes, can provide novel information about early pathophysiologic changes that occur before structural or even microstructural changes can be detected. This sensitivity not only makes it a powerful tool for detection and characterization of disease, but also a tool able to rapidly assess the efficacy of therapies. These benefits have garnered more attention to PET imaging of MSK disorders in recent years. In this narrative review, we discuss several applications of multimodal PET imaging in non-oncologic MSK diseases including arthritis, osteoporosis, and sources of pain and inflammation. We also describe technical considerations and recent advancements in technology and radiotracers as well as areas of emerging interest for future applications of multimodal PET imaging of MSK conditions. Overall, we present evidence that the incorporation of PET through multimodal imaging offers an exciting addition to the field of MSK radiology and will likely prove valuable in the transition to an era of precision medicine.

4.
Magn Reson Med ; 89(2): 577-593, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36161727

RESUMEN

PURPOSE: To develop and validate a method for B 0 $$ {B}_0 $$ mapping for knee imaging using the quantitative Double-Echo in Steady-State (qDESS) exploiting the phase difference ( Δ Î¸ $$ \Delta \theta $$ ) between the two echoes acquired. Contrary to a two-gradient-echo (2-GRE) method, Δ Î¸ $$ \Delta \theta $$ depends only on the first echo time. METHODS: Bloch simulations were applied to investigate robustness to noise of the proposed methodology and all imaging studies were validated with phantoms and in vivo simultaneous bilateral knee acquisitions. Two phantoms and five healthy subjects were scanned using qDESS, water saturation shift referencing (WASSR), and multi-GRE sequences. Δ B 0 $$ \Delta {B}_0 $$ maps were calculated with the qDESS and the 2-GRE methods and compared against those obtained with WASSR. The comparison was quantitatively assessed exploiting pixel-wise difference maps, Bland-Altman (BA) analysis, and Lin's concordance coefficient ( ρ c $$ {\rho}_c $$ ). For in vivo subjects, the comparison was assessed in cartilage using average values in six subregions. RESULTS: The proposed method for measuring Δ B 0 $$ \Delta {B}_0 $$ inhomogeneities from a qDESS acquisition provided Δ B 0 $$ \Delta {B}_0 $$ maps that were in good agreement with those obtained using WASSR. Δ B 0 $$ \Delta {B}_0 $$ ρ c $$ {\rho}_c $$ values were ≥ $$ \ge $$ 0.98 and 0.90 in phantoms and in vivo, respectively. The agreement between qDESS and WASSR was comparable to that of a 2-GRE method. CONCLUSION: The proposed method may allow B0 correction for qDESS T 2 $$ {T}_2 $$ mapping using an inherently co-registered Δ B 0 $$ \Delta {B}_0 $$ map without requiring an additional B0 measurement sequence. More generally, the method may help shorten knee imaging protocols that require an auxiliary Δ B 0 $$ \Delta {B}_0 $$ map by exploiting a qDESS acquisition that also provides T 2 $$ {T}_2 $$ measurements and high-quality morphological imaging.


Asunto(s)
Rodilla , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Fantasmas de Imagen , Rodilla/diagnóstico por imagen , Articulación de la Rodilla/diagnóstico por imagen , Agua
5.
J Magn Reson Imaging ; 2023 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-38156716

RESUMEN

With a substantial growth in the use of musculoskeletal MRI, there has been a growing need to improve MRI workflow, and faster imaging has been suggested as one of the solutions for a more efficient examination process. Consequently, there have been considerable advances in accelerated MRI scanning methods. This article aims to review the basic principles and applications of accelerated musculoskeletal MRI techniques including widely used conventional acceleration methods, more advanced deep learning-based techniques, and new approaches to reduce scan time. Specifically, conventional accelerated MRI techniques, including parallel imaging, compressed sensing, and simultaneous multislice imaging, and deep learning-based accelerated MRI techniques, including undersampled MR image reconstruction, super-resolution imaging, artifact correction, and generation of unacquired contrast images, are discussed. Finally, new approaches to reduce scan time, including synthetic MRI, novel sequences, and new coil setups and designs, are also reviewed. We believe that a deep understanding of these fast MRI techniques and proper use of combined acceleration methods will synergistically improve scan time and MRI workflow in daily practice. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY: Stage 1.

6.
J Magn Reson Imaging ; 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37854004

RESUMEN

Magnetic resonance imaging (MRI) can provide accurate and non-invasive diagnoses of lower extremity injuries in athletes. Sport-related injuries commonly occur in and around the knee and can affect the articular cartilage, patellar tendon, hamstring muscles, and bone. Sports medicine physicians utilize MRI to evaluate and diagnose injury, track recovery, estimate return to sport timelines, and assess the risk of recurrent injury. This article reviews the current literature and describes novel developments of quantitative MRI tools that can further advance our understanding of sports injury diagnosis, prevention, and treatment while minimizing injury risk and rehabilitation time. Innovative approaches for enhancing the early diagnosis and treatment of musculoskeletal injuries in basketball players span a spectrum of techniques. These encompass the utilization of T2 , T1ρ , and T2 * quantitative MRI, along with dGEMRIC and Na-MRI to assess articular cartilage injuries, 3D-Ultrashort echo time MRI for patellar tendon injuries, diffusion tensor imaging for acute myotendinous injuries, and sagittal short tau inversion recovery and axial long-axis T1 -weighted, and 3D Cube sequences for bone stress imaging. Future studies should further refine and validate these MR-based quantitative techniques while exploring the lifelong cumulative impact of basketball on players' knees. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY: Stage 2.

7.
J Magn Reson Imaging ; 57(4): 1029-1039, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-35852498

RESUMEN

BACKGROUND: Deep learning (DL)-based automatic segmentation models can expedite manual segmentation yet require resource-intensive fine-tuning before deployment on new datasets. The generalizability of DL methods to new datasets without fine-tuning is not well characterized. PURPOSE: Evaluate the generalizability of DL-based models by deploying pretrained models on independent datasets varying by MR scanner, acquisition parameters, and subject population. STUDY TYPE: Retrospective based on prospectively acquired data. POPULATION: Overall test dataset: 59 subjects (26 females); Study 1: 5 healthy subjects (zero females), Study 2: 8 healthy subjects (eight females), Study 3: 10 subjects with osteoarthritis (eight females), Study 4: 36 subjects with various knee pathology (10 females). FIELD STRENGTH/SEQUENCE: A 3-T, quantitative double-echo steady state (qDESS). ASSESSMENT: Four annotators manually segmented knee cartilage. Each reader segmented one of four qDESS datasets in the test dataset. Two DL models, one trained on qDESS data and another on Osteoarthritis Initiative (OAI)-DESS data, were assessed. Manual and automatic segmentations were compared by quantifying variations in segmentation accuracy, volume, and T2 relaxation times for superficial and deep cartilage. STATISTICAL TESTS: Dice similarity coefficient (DSC) for segmentation accuracy. Lin's concordance correlation coefficient (CCC), Wilcoxon rank-sum tests, root-mean-squared error-coefficient-of-variation to quantify manual vs. automatic T2 and volume variations. Bland-Altman plots for manual vs. automatic T2 agreement. A P value < 0.05 was considered statistically significant. RESULTS: DSCs for the qDESS-trained model, 0.79-0.93, were higher than those for the OAI-DESS-trained model, 0.59-0.79. T2 and volume CCCs for the qDESS-trained model, 0.75-0.98 and 0.47-0.95, were higher than respective CCCs for the OAI-DESS-trained model, 0.35-0.90 and 0.13-0.84. Bland-Altman 95% limits of agreement for superficial and deep cartilage T2 were lower for the qDESS-trained model, ±2.4 msec and ±4.0 msec, than the OAI-DESS-trained model, ±4.4 msec and ±5.2 msec. DATA CONCLUSION: The qDESS-trained model may generalize well to independent qDESS datasets regardless of MR scanner, acquisition parameters, and subject population. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 1.


Asunto(s)
Cartílago Articular , Aprendizaje Profundo , Osteoartritis de la Rodilla , Femenino , Humanos , Estudios Retrospectivos , Cartílago Articular/patología , Imagen por Resonancia Magnética/métodos , Algoritmos , Osteoartritis de la Rodilla/patología
8.
NMR Biomed ; 35(1): e4614, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34549476

RESUMEN

The dynamic contrast-enhanced (DCE)-MRI parameter Ktrans can quantify the intensity of synovial inflammation (synovitis) in knees with osteoarthritis (OA), but requires the use of gadolinium-based contrast agent (GBCA). Diffusion tensor imaging (DTI) measures the diffusion of water molecules with parameters mean diffusivity (MD) and fractional anisotropy (FA), and has been proposed as a method to detect synovial inflammation without the use of GBCA. The purpose of this study is to (1) determine the ability of DTI to quantify the intensity of synovitis in OA by comparing MD and FA with our imaging gold standard Ktrans within the synovium and (2) compare DTI and DCE-MRI measures with the semi-quantitative grading of OA severity with the Kellgren-Lawrence (KL) and MRI Osteoarthritis Knee Score (MOAKS) systems, in order to assess the relationship between synovitis intensity and OA severity. Within the synovium, MD showed a significant positive correlation with Ktrans (r = 0.79, p < 0.001), while FA showed a significant negative correlation with Ktrans (r = -0.72, p = 0.0026). These results show that DTI is able to quantify the intensity of synovitis within the whole synovium without the use of exogenous contrast agent. Additionally, MD, FA, and Ktrans values did not vary significantly when knees were separated by KL grade (p = 0.15, p = 0.32, p = 0.41, respectively), while MD (r = 0.60, p = 0.018) and Ktrans (r = 0.62, p = 0.013) had a significant positive correlation and FA (r = -0.53, p = 0.043) had a negative correlation with MOAKS. These comparisons indicate that quantitative measures of the intensity of synovitis may provide information in addition to morphological assessment to evaluate OA severity. Using DTI to quantify the intensity of synovitis without GBCA may be helpful to facilitate a broader clinical assessment of the severity of OA.


Asunto(s)
Imagen de Difusión Tensora/métodos , Osteoartritis de la Rodilla/diagnóstico por imagen , Sinovitis/diagnóstico por imagen , Adulto , Anciano , Medios de Contraste , Estudios Transversales , Femenino , Gadolinio , Humanos , Aumento de la Imagen , Masculino , Persona de Mediana Edad , Relación Señal-Ruido
9.
AJR Am J Roentgenol ; 218(3): 405-417, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34286595

RESUMEN

Synovitis, inflammation of the synovial membrane, is a common manifestation of osteoarthritis (OA) and is recognized to play a role in the complex pathophysiology of OA. Increased recognition of the importance of synovitis in the OA disease process and its potential as a target for treatment has increased the need for noninvasive detection and characterization of synovitis using medical imaging. Numerous imaging methods can assess synovitis involvement in OA with varying sensitivity, specificity, and complexity. This article reviews the role of contrast-enhanced MRI, conventional MRI, novel unenhanced MRI, gray-scale ultrasound (US), and power Doppler US in the assessment of synovitis in patients with OA. The role of imaging in disease evaluation and the challenges of conventional imaging methods are discussed. We also provide an overview of the potential utility of emerging techniques for imaging of early inflammation and molecular inflammatory markers of synovitis, including quantitative MRI, superb microvascular imaging, and PET. The development of therapeutic treatments targeting inflammatory features, particularly in early OA, would greatly increase the importance of these imaging methods for clinical decision-making and evaluation of therapeutic efficacy.


Asunto(s)
Diagnóstico por Imagen/métodos , Inflamación/diagnóstico por imagen , Inflamación/etiología , Osteoartritis/complicaciones , Osteoartritis/diagnóstico por imagen , Membrana Sinovial/diagnóstico por imagen , Humanos , Inflamación/fisiopatología , Osteoartritis/fisiopatología , Membrana Sinovial/fisiopatología
10.
Magn Reson Med ; 86(1): 308-319, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33608954

RESUMEN

PURPOSE: Provide a direct, non-invasive diagnostic measure of microscopic tissue texture in the size scale between tens of microns and the much larger scale measurable by clinical imaging. This paper presents a method and data demonstrating the ability to measure these microscopic pathologic tissue textures (histology) in the presence of subject motion in an MR scanner. This size range is vital to diagnosing a wide range of diseases. THEORY/METHODS: MR micro-Texture (MRµT) resolves these textures by a combination of measuring a targeted set of k-values to characterize texture-as in diffraction analysis of materials, performing a selective internal excitation to isolate a volume of interest (VOI), applying a high k-value phase encode to the excited spins in the VOI, and acquiring each individual k-value data point in a single excitation-providing motion immunity and extended acquisition time for maximizing signal-to-noise ratio. Additional k-value measurements from the same tissue can be made to characterize the tissue texture in the VOI-there is no need for these additional measurements to be spatially coherent as there is no image to be reconstructed. This method was applied to phantoms and tissue specimens including human prostate tissue. RESULTS: Data demonstrating resolution <50 µm, motion immunity, and clearly differentiating between normal and cancerous tissue textures are presented. CONCLUSION: The data reveal textural differences not resolvable by standard MR imaging. As MRµT is a pulse sequence, it is directly translatable to MRI scanners currently in clinical practice to meet the need for further improvement in cancer imaging.


Asunto(s)
Imagen por Resonancia Magnética , Humanos , Masculino , Movimiento (Física) , Fantasmas de Imagen , Relación Señal-Ruido
11.
J Magn Reson Imaging ; 54(2): 357-371, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-32830874

RESUMEN

Artificial intelligence algorithms based on principles of deep learning (DL) have made a large impact on the acquisition, reconstruction, and interpretation of MRI data. Despite the large number of retrospective studies using DL, there are fewer applications of DL in the clinic on a routine basis. To address this large translational gap, we review the recent publications to determine three major use cases that DL can have in MRI, namely, that of model-free image synthesis, model-based image reconstruction, and image or pixel-level classification. For each of these three areas, we provide a framework for important considerations that consist of appropriate model training paradigms, evaluation of model robustness, downstream clinical utility, opportunities for future advances, as well recommendations for best current practices. We draw inspiration for this framework from advances in computer vision in natural imaging as well as additional healthcare fields. We further emphasize the need for reproducibility of research studies through the sharing of datasets and software. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY STAGE: 2.


Asunto(s)
Inteligencia Artificial , Aprendizaje Profundo , Algoritmos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Redes Neurales de la Computación , Estudios Prospectivos , Reproducibilidad de los Resultados , Estudios Retrospectivos
12.
J Magn Reson Imaging ; 54(3): 840-851, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33763929

RESUMEN

BACKGROUND: Injuries to the articular cartilage in the knee are common in jumping athletes, particularly high-level basketball players. Unfortunately, these are often diagnosed at a late stage of the disease process, after tissue loss has already occurred. PURPOSE/HYPOTHESIS: To evaluate longitudinal changes in knee articular cartilage and knee function in National Collegiate Athletic Association (NCAA) basketball players and their evolution over the competitive season and off-season. STUDY TYPE: Longitudinal, multisite cohort study. POPULATION: Thirty-two NCAA Division 1 athletes: 22 basketball players and 10 swimmers. FIELD STRENGTH/SEQUENCE: Bilateral magnetic resonance imaging (MRI) using a combined T1ρ and T2 magnetization-prepared angle-modulated portioned k-space spoiled gradient-echo snapshots (MAPSS) sequence at 3T. ASSESSMENT: We calculated T2 and T1ρ relaxation times to compare compositional cartilage changes between three timepoints: preseason 1, postseason 1, and preseason 2. Knee Osteoarthritis Outcome Scores (KOOS) were used to assess knee health. STATISTICAL TESTS: One-way variance model hypothesis test, general linear model, and chi-squared test. RESULTS: In the femoral articular cartilage of all athletes, we saw a global decrease in T2 and T1ρ relaxation times during the competitive season (all P < 0.05) and an increase in T2 and T1ρ relaxation times during the off-season (all P < 0.05). In the basketball players' femoral cartilage, the anterior and central compartments respectively had the highest T2 and T1ρ relaxation times following the competitive season and off-season. The basketball players had significantly lower KOOS measures in every domain compared with the swimmers: Pain (P < 0.05), Symptoms (P < 0.05), Function in Daily Living (P < 0.05), Function in Sport/Recreation (P < 0.05), and Quality of Life (P < 0.05). CONCLUSION: Our results indicate that T2 and T1ρ MRI can detect significant seasonal changes in the articular cartilage of basketball players and that there are regional differences in the articular cartilage that are indicative of basketball-specific stress on the femoral cartilage. This study demonstrates the potential of quantitative MRI to monitor global and regional cartilage health in athletes at risk of developing cartilage problems. LEVEL OF EVIDENCE: 2 Technical Efficacy Stage: 2.


Asunto(s)
Baloncesto , Cartílago Articular , Osteoartritis de la Rodilla , Cartílago Articular/diagnóstico por imagen , Estudios de Cohortes , Humanos , Articulación de la Rodilla/diagnóstico por imagen , Imagen por Resonancia Magnética , Calidad de Vida , Estaciones del Año
13.
Eur Radiol ; 31(12): 9369-9379, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33993332

RESUMEN

OBJECTIVES: To determine whether synovitis graded by radiologists using hybrid quantitative double-echo in steady-state (qDESS) images can be utilized as a non-contrast approach to assess synovitis in the knee, compared against the reference standard of contrast-enhanced MRI (CE-MRI). METHODS: Twenty-two knees (11 subjects) with moderate to severe osteoarthritis (OA) were scanned using CE-MRI, qDESS with a high diffusion weighting (qDESSHigh), and qDESS with a low diffusion weighting (qDESSLow). Four radiologists graded the overall impression of synovitis, their diagnostic confidence, and regional grading of synovitis severity at four sites (suprapatellar pouch, intercondylar notch, and medial and lateral peripatellar recesses) in the knee using a 4-point scale. Agreement between CE-MRI and qDESS, inter-rater agreement, and intra-rater agreement were assessed using a linearly weighted Gwet's AC2. RESULTS: Good agreement was seen between CE-MRI and both qDESSLow (AC2 = 0.74) and qDESSHigh (AC2 = 0.66) for the overall impression of synovitis, but both qDESS sequences tended to underestimate the severity of synovitis compared to CE-MRI. Good inter-rater agreement was seen for both qDESS sequences (AC2 = 0.74 for qDESSLow, AC2 = 0.64 for qDESSHigh), and good intra-rater agreement was seen for both sequences as well (qDESSLow AC2 = 0.78, qDESSHigh AC2 = 0.80). Diagnostic confidence was moderate to high for qDESSLow (mean = 2.36) and slightly less than moderate for qDESSHigh (mean = 1.86), compared to mostly high confidence for CE-MRI (mean = 2.73). CONCLUSIONS: qDESS shows potential as an alternative MRI technique for assessing the severity of synovitis without the use of a gadolinium-based contrast agent. KEY POINTS: The use of the quantitative double-echo in steady-state (qDESS) sequence for synovitis assessment does not require the use of a gadolinium-based contrast agent. Preliminary results found that low diffusion-weighted qDESS (qDESSLow) shows good agreement to contrast-enhanced MRI for characterization of the severity of synovitis, with a relative bias towards underestimation of severity. Preliminary results also found that qDESSLow shows good inter- and intra-rater agreement for the depiction of synovitis, particularly for readers experienced with the sequence.


Asunto(s)
Osteoartritis de la Rodilla , Sinovitis , Medios de Contraste , Humanos , Articulación de la Rodilla/diagnóstico por imagen , Imagen por Resonancia Magnética , Osteoartritis de la Rodilla/diagnóstico por imagen , Membrana Sinovial , Sinovitis/diagnóstico por imagen
14.
AJR Am J Roentgenol ; 216(6): 1614-1625, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-32755384

RESUMEN

BACKGROUND. Potential approaches for abbreviated knee MRI, including prospective acceleration with deep learning, have achieved limited clinical implementation. OBJECTIVE. The objective of this study was to evaluate the interreader agreement between conventional knee MRI and a 5-minute 3D quantitative double-echo steady-state (qDESS) sequence with automatic T2 mapping and deep learning super-resolutionaugmentation and to compare the diagnostic performance of the two methods regarding findings from arthroscopic surgery. METHODS. Fifty-one patients with knee pain underwent knee MRI that included an additional 3D qDESS sequence with automatic T2 mapping. Fourier interpolation was followed by prospective deep learning super resolution to enhance qDESS slice resolution twofold. A musculoskeletal radiologist and a radiology resident performed independent retrospective evaluations of articular cartilage, menisci, ligaments, bones, extensor mechanism, and synovium using conventional MRI. Following a 2-month washout period, readers reviewed qDESS images alone followed by qDESS with the automatic T2 maps. Interreader agreement between conventional MRI and qDESS was computed using percentage agreement and Cohen kappa. The sensitivity and specificity of conventional MRI, qDESS alone, and qDESS plus T2 mapping were compared with arthroscopic findings using exact McNemar tests. RESULTS. Conventional MRI and qDESS showed 92% agreement in evaluating all tissues. Kappa was 0.79 (95% CI, 0.76-0.81) across all imaging findings. In 43 patients who underwent arthroscopy, sensitivity and specificity were not significantly different (p = .23 to > .99) between conventional MRI (sensitivity, 58-93%; specificity, 27-87%) and qDESS alone (sensitivity, 54-90%; specificity, 23-91%) for cartilage, menisci, ligaments, and synovium. For grade 1 cartilage lesions, sensitivity and specificity were 33% and 56%, respectively, for conventional MRI; 23% and 53% for qDESS (p = .81); and 46% and 39% for qDESS with T2 mapping (p = .80). For grade 2A lesions, values were 27% and 53% for conventional MRI, 26% and 52% for qDESS (p = .02), and 58% and 40% for qDESS with T2 mapping (p < .001). CONCLUSION. The qDESS method prospectively augmented with deep learning showed strong interreader agreement with conventional knee MRI and near-equivalent diagnostic performance regarding arthroscopy. The ability of qDESS to automatically generate T2 maps increases sensitivity for cartilage abnormalities. CLINICAL IMPACT. Using prospective artificial intelligence to enhance qDESS image quality may facilitate an abbreviated knee MRI protocol while generating quantitative T2 maps.


Asunto(s)
Medios de Contraste , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Traumatismos de la Rodilla/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Adolescente , Adulto , Anciano , Inteligencia Artificial , Estudios de Evaluación como Asunto , Femenino , Humanos , Imagenología Tridimensional/métodos , Articulación de la Rodilla/diagnóstico por imagen , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Tiempo , Adulto Joven
15.
Acta Orthop ; 92(3): 335-340, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33538221

RESUMEN

Background and purpose - Quantitative T2 mapping MRI of cartilage has proven value for the assessment of early osteoarthritis changes in research. We evaluated knee cartilage T2 relaxation times in a clinical population with knee complaints and its association with patients and disease characteristics and clinical symptoms.Patients and methods - In this cross-sectional study, T2 mapping knee scans of 109 patients with knee pain who were referred for an MRI by an orthopedic surgeon were collected. T2 relaxation times were calculated in 6 femoral and tibial regions of interest of full-thickness tibiofemoral cartilage. Its associations with age, sex, BMI, duration of complaints, disease onset (acute/chronic), and clinical symptoms were assessed with multivariate regression analysis. Subgroups were created of patients with abnormalities expected to cause predominantly medial or lateral tibiofemoral cartilage changes.Results - T2 relaxation times increased statistically significantly with higher age and BMI. In patients with expected medial cartilage damage, the medial femoral T2 values were significantly higher than the lateral; in patients with expected lateral cartilage damage the lateral tibial T2 values were significantly higher. A traumatic onset of knee complaints was associated with an acute elevation. No significant association was found with clinical symptoms.Interpretation - Our study demonstrates age, BMI, and type of injury-dependent T2 relaxation times and emphasizes the importance of acknowledging these variations when performing T2 mapping in a clinical population.


Asunto(s)
Cartílago Articular/diagnóstico por imagen , Imagen por Resonancia Magnética , Osteoartritis de la Rodilla/diagnóstico por imagen , Adolescente , Adulto , Factores de Edad , Anciano , Índice de Masa Corporal , Cartílago Articular/patología , Estudios Transversales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Osteoartritis de la Rodilla/complicaciones , Osteoartritis de la Rodilla/patología , Adulto Joven
16.
NMR Biomed ; 33(8): e4310, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32445515

RESUMEN

Chemical exchange saturation transfer of glycosaminoglycans, gagCEST, is a quantitative MR technique that has potential for assessing cartilage proteoglycan content at field strengths of 7 T and higher. However, its utility at 3 T remains unclear. The objective of this work was to implement a rapid volumetric gagCEST sequence with higher gagCEST asymmetry at 3 T to evaluate its sensitivity to osteoarthritic changes in knee articular cartilage and in comparison with T2 and T1ρ measures. We hypothesize that gagCEST asymmetry at 3 T decreases with increasing severity of osteoarthritis (OA). Forty-two human volunteers, including 10 healthy subjects and 32 subjects with medial OA, were included in the study. Knee Injury and Osteoarthritis Outcome Scores (KOOS) were assessed for all subjects, and Kellgren-Lawrence grading was performed for OA volunteers. Healthy subjects were scanned consecutively at 3 T to assess the repeatability of the volumetric gagCEST sequence at 3 T. For healthy and OA subjects, gagCEST asymmetry and T2 and T1ρ relaxation times were calculated for the femoral articular cartilage to assess sensitivity to OA severity. Volumetric gagCEST imaging had higher gagCEST asymmetry than single-slice acquisitions (p = 0.015). The average scan-rescan coefficient of variation was 6.8%. There were no significant differences in average gagCEST asymmetry between younger and older healthy controls (p = 0.655) or between healthy controls and OA subjects (p = 0.310). T2 and T1ρ relaxation times were elevated in OA subjects (p < 0.001 for both) compared with healthy controls and both were moderately correlated with total KOOS scores (rho = -0.181 and rho = -0.332 respectively). The gagCEST technique developed here, with volumetric scan times under 10 min and high gagCEST asymmetry at 3 T, did not vary significantly between healthy subjects and those with mild-moderate OA. This further supports a limited utility for gagCEST imaging at 3 T for assessment of early changes in cartilage composition in OA.


Asunto(s)
Cartílago Articular/química , Glicosaminoglicanos , Articulación de la Rodilla/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Osteoartritis de la Rodilla/diagnóstico por imagen , Proteoglicanos/análisis , Adulto , Anciano , Femenino , Fémur/diagnóstico por imagen , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad , Osteoartritis de la Rodilla/metabolismo , Reproducibilidad de los Resultados
17.
J Magn Reson Imaging ; 52(5): 1321-1339, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-31755191

RESUMEN

Osteoarthritis (OA) of the knee is a major source of disability that has no known treatment or cure. Morphological and compositional MRI is commonly used for assessing the bone and soft tissues in the knee to enhance the understanding of OA pathophysiology. However, it is challenging to extend these imaging methods and their subsequent analysis techniques to study large population cohorts due to slow and inefficient imaging acquisition and postprocessing tools. This can create a bottleneck in assessing early OA changes and evaluating the responses of novel therapeutics. The purpose of this review article is to highlight recent developments in tools for enhancing the efficiency of knee MRI methods useful to study OA. Advances in efficient MRI data acquisition and reconstruction tools for morphological and compositional imaging, efficient automated image analysis tools, and hardware improvements to further drive efficient imaging are discussed in this review. For each topic, we discuss the current challenges as well as potential future opportunities to alleviate these challenges. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY STAGE: 3.


Asunto(s)
Cartílago Articular , Osteoartritis de la Rodilla , Osteoartritis , Huesos , Humanos , Articulación de la Rodilla/diagnóstico por imagen , Imagen por Resonancia Magnética , Osteoartritis de la Rodilla/diagnóstico por imagen
18.
J Magn Reson Imaging ; 51(3): 768-779, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31313397

RESUMEN

BACKGROUND: Super-resolution is an emerging method for enhancing MRI resolution; however, its impact on image quality is still unknown. PURPOSE: To evaluate MRI super-resolution using quantitative and qualitative metrics of cartilage morphometry, osteophyte detection, and global image blurring. STUDY TYPE: Retrospective. POPULATION: In all, 176 MRI studies of subjects at varying stages of osteoarthritis. FIELD STRENGTH/SEQUENCE: Original-resolution 3D double-echo steady-state (DESS) and DESS with 3× thicker slices retrospectively enhanced using super-resolution and tricubic interpolation (TCI) at 3T. ASSESSMENT: A quantitative comparison of femoral cartilage morphometry was performed for the original-resolution DESS, the super-resolution, and the TCI scans in 17 subjects. A reader study by three musculoskeletal radiologists assessed cartilage image quality, overall image sharpness, and osteophytes incidence in all three sets of scans. A referenceless blurring metric evaluated blurring in all three image dimensions for the three sets of scans. STATISTICAL TESTS: Mann-Whitney U-tests compared Dice coefficients (DC) of segmentation accuracy for the DESS, super-resolution, and TCI images, along with the image quality readings and blurring metrics. Sensitivity, specificity, and diagnostic odds ratio (DOR) with 95% confidence intervals compared osteophyte detection for the super-resolution and TCI images, with the original-resolution as a reference. RESULTS: DC for the original-resolution (90.2 ± 1.7%) and super-resolution (89.6 ± 2.0%) were significantly higher (P < 0.001) than TCI (86.3 ± 5.6%). Segmentation overlap of super-resolution with the original-resolution (DC = 97.6 ± 0.7%) was significantly higher (P < 0.0001) than TCI overlap (DC = 95.0 ± 1.1%). Cartilage image quality for sharpness and contrast levels, and the through-plane quantitative blur factor for super-resolution images, was significantly (P < 0.001) better than TCI. Super-resolution osteophyte detection sensitivity of 80% (76-82%), specificity of 93% (92-94%), and DOR of 32 (22-46) was significantly higher (P < 0.001) than TCI sensitivity of 73% (69-76%), specificity of 90% (89-91%), and DOR of 17 (13-22). DATA CONCLUSION: Super-resolution appears to consistently outperform naïve interpolation and may improve image quality without biasing quantitative biomarkers. LEVEL OF EVIDENCE: 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2020;51:768-779.


Asunto(s)
Aprendizaje Profundo , Osteoartritis , Biomarcadores , Humanos , Imagen por Resonancia Magnética , Osteoartritis/diagnóstico por imagen , Reproducibilidad de los Resultados , Estudios Retrospectivos
19.
Eur Radiol ; 30(4): 2231-2240, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31844957

RESUMEN

OBJECTIVES: To assess the discriminative power of a 5-min quantitative double-echo steady-state (qDESS) sequence for simultaneous T2 measurements of cartilage and meniscus, and structural knee osteoarthritis (OA) assessment, in a clinical OA population, using radiographic knee OA as reference standard. METHODS: Fifty-three subjects were included and divided over three groups based on radiographic and clinical knee OA: 20 subjects with no OA (Kellgren-Lawrence grade (KLG) 0), 18 with mild OA (KLG2), and 15 with moderate OA (KLG3). All patients underwent a 5-min qDESS scan. We measured T2 relaxation times in four cartilage and four meniscus regions of interest (ROIs) and performed structural OA evaluation with the MRI Osteoarthritis Knee Score (MOAKS) using qDESS with multiplanar reformatting. Between-group differences in T2 values and MOAKS were calculated using ANOVA. Correlations of the reference standard (i.e., radiographic knee OA) with T2 and MOAKS were assessed with correlation analyses for ordinal variables. RESULTS: In cartilage, mean T2 values were 36.1 ± SD 4.3, 40.6 ± 5.9, and 47.1 ± 4.3 ms for no, mild, and moderate OA, respectively (p < 0.001). In menisci, mean T2 values were 15 ± 3.6, 17.5 ± 3.8, and 20.6 ± 4.7 ms for no, mild, and moderate OA, respectively (p < 0.001). Statistically significant correlations were found between radiographic OA and T2 and between radiographic OA and MOAKS in all ROIs (p < 0.05). CONCLUSION: Quantitative T2 and structural assessment of cartilage and meniscus, using a single 5-min qDESS scan, can distinguish between different grades of radiographic OA, demonstrating the potential of qDESS as an efficient tool for OA imaging. KEY POINTS: • Quantitative T2values of cartilage and meniscus as well as structural assessment of the knee with a single 5-min quantitative double-echo steady-state (qDESS) scan can distinguish between different grades of knee osteoarthritis (OA). • Quantitative and structural qDESS-based measurements correlate significantly with the reference standard, radiographic degree of OA, for all cartilage and meniscus regions. • By providing quantitative measurements and diagnostic image quality in one rapid MRI scan, qDESS has great potential for application in large-scale clinical trials in knee OA.


Asunto(s)
Cartílago Articular/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Meniscos Tibiales/diagnóstico por imagen , Osteoartritis de la Rodilla/diagnóstico por imagen , Adulto , Anciano , Estudios de Casos y Controles , Femenino , Humanos , Articulación de la Rodilla/diagnóstico por imagen , Masculino , Persona de Mediana Edad , Índice de Severidad de la Enfermedad , Factores de Tiempo , Adulto Joven
20.
Semin Musculoskelet Radiol ; 24(4): 441-450, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32992371

RESUMEN

Identifying the source of a person's pain is a significant clinical challenge because the physical sensation of pain is believed to be subjective and difficult to quantify. The experience of pain is not only modulated by the individual's threshold to painful stimuli but also a product of the person's affective contributions, such as fear, anxiety, and previous experiences. Perhaps then to quantify pain is to examine the degree of nociception and pro-nociceptive inflammation, that is, the extent of cellular, chemical, and molecular changes that occur in pain-generating processes. Measuring changes in the local density of receptors, ion channels, mediators, and inflammatory/immune cells that are involved in the painful phenotype using targeted, highly sensitive, and specific positron emission tomography (PET) radiotracers is therefore a promising approach toward objectively identifying peripheral pain generators. Although several preclinical radiotracer candidates are being developed, a growing number of ongoing clinical PET imaging approaches can measure the degree of target concentration and thus serve as a readout for sites of pain generation. Further, when PET is combined with the spatial and contrast resolution afforded by magnetic resonance imaging, nuclear medicine physicians and radiologists can potentially identify pain drivers with greater accuracy and confidence. Clinical PET imaging approaches with fluorine-18 fluorodeoxyglucose, fluorine-18 sodium fluoride, and sigma-1 receptor PET radioligand and translocator protein radioligands to isolate the source of pain are described here.


Asunto(s)
Dolor Musculoesquelético/diagnóstico por imagen , Dolor Musculoesquelético/etiología , Tomografía de Emisión de Positrones/métodos , Fluorodesoxiglucosa F18 , Humanos , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Radiofármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA