Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
J Chem Phys ; 160(21)2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38842492

RESUMEN

Both sugars and lipids are important biomolecular building blocks with exceptional conformational flexibility and adaptability to their environment. Glycolipids bring together these two molecular components in the same assembly and combine the complexity of their conformational landscapes. In the present study, we have used selective double resonance vibrational spectroscopy, in combination with a computational approach, to explore the conformational preferences of two glycolipid models (3-0-acyl catechol and guaiacol α-D-glucopyranosides), either fully isolated in the gas phase or controlled interaction with a single water molecule. We could identify the preferred conformation and structures of the isolated and micro-hydrated species and evidence of the presence of a strong water pocket, which may influence the conformational flexibility of such systems, even in less controlled environments.

2.
Phys Rev Lett ; 131(25): 253201, 2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38181353

RESUMEN

Excited double-core-hole states of isolated water molecules resulting from the sequential absorption of two x-ray photons have been investigated. These states are formed through an alternative pathway, where the initial step of core ionization is accompanied by the shake-up of a valence electron, leading to the same final states as in the core-ionization followed by core-excitation pathway. The capability of the x-ray free-electron laser to deliver very intense, very short, and tunable light pulses is fully exploited to identify the two different pathways.

3.
Chemistry ; 29(9): e202202913, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36377879

RESUMEN

Peptides containing variations of the ß-amyloid hydrophobic core and five-membered sulfamidates derived from ß-amino acid α-methylisoserine have been synthesized and fully characterized in the gas phase, solid state and in aqueous solution by a combination of experimental and computational techniques. The cyclic sulfamidate group effectively locks the secondary structure at the N-terminus of such hybrid peptides imposing a conformational restriction and stabilizing non-extended structures. This conformational bias, which is maintained in the gas phase, solid state and aqueous solution, is shown to be resistant to structure templating through assays of in vitro ß-amyloid aggregation, acting as ß-sheet breaker peptides with moderate activity.


Asunto(s)
Aminoácidos , Péptidos beta-Amiloides , Conformación Proteica en Lámina beta , Péptidos beta-Amiloides/química , Estructura Secundaria de Proteína
4.
Phys Chem Chem Phys ; 25(17): 12331-12341, 2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37083971

RESUMEN

Hydrogen bonding (HB) is associated with frequency shifts, spectral broadening and intensity variation of the vibrational bands of the donor stretching modes. This is true in all systems, from the most basic molecular models, to more complex ones, and biological molecules. In the gas phase, the latter can be either fully isolated, with only intramolecular HB, or micro-solvated. The conformations of such systems are stabilized by networks of intramolecular and intermolecular HB where the donor groups can be coupled. This has been well-identified in the case of singly hydrated monosaccharides and in particular for phenyl-α-D-mannopyranoside, where the addition of a single water molecule reduces the number of observed conformations to a unique one, stabilized by such a cooperative network of intramolecular and intermolecular HB. In the present study we have re-examined this prototypical system to scrutinize subtle effects of isotopic substitution in the solvent molecule. Besides the obvious isotopic shift, coupling between intramolecular modes of sugar and water is observed, promoted by the intermolecular HB. The systematic substitution of water with heavy water, or methanol, also allowed the decomposition of the relation between HB strength and frequency shift.

5.
Chemistry ; 28(25): e202104328, 2022 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-35175657

RESUMEN

Models of asparagine-containing dipeptides specifically designed to favor intrinsic folding into an Asx turn were characterized both theoretically, by using quantum chemistry, and experimentally, by using laser spectroscopy in the gas phase. Both approaches provided evidence for the spontaneous folding of both the Asn-Ala and Asn-Gly dipeptide models into the most stable Asx turn, a conformation stabilized by a C10 H-bond that was very similar to a type II' ß-turn. In parallel, analysis of Asx turns implicating asparagine in crystallized protein structures in the Protein Data Bank revealed a sequence-dependent behavior. In Asn-Ala sequences, the Asx turn was found in conjunction with a type I ß-turn for which the first of the four defining residues was Asn. The observation that the Asx turn in these structures is mostly of type II' (i. e., its most stable innate structure) suggests that this motif might foster the formation and/or enhance the stability of the backbone ß-turn. In contrast, the Asx turns observed in Asn-Gly sequences extensively adopted a type II Asx-turn structure, thus suggesting that their formation should be ascribed to other factors, such as hydration. The fact that the Asx turn in a Asn-Gly sequence is also often found in combination with a hydrated ß-bulge supports the premise that a Asn-Gly sequence might efficiently promote the formation of the ß-bulge secondary structure.


Asunto(s)
Asparagina , Proteínas , Asparagina/química , Bases de Datos de Proteínas , Dipéptidos/química , Estructura Secundaria de Proteína
6.
Chemistry ; 28(25): e202200969, 2022 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-35419892

RESUMEN

Invited for the cover of this issue are David J. Aitken, Michel Mons, and co-workers at Université Paris-Saclay. The image depicts the investigation strategies used to document the intrinsic structures of an important secondary structure in proteins, the so-called Asx turn. Read the full text of the article at 10.1002/chem.202104328.


Asunto(s)
Proteínas , Humanos , Estructura Secundaria de Proteína , Proteínas/química
7.
Phys Chem Chem Phys ; 24(4): 2656-2663, 2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35029607

RESUMEN

We studied the iron(II) phthalocyanine molecule in the gas-phase. It is a complex transition organometallic compound, for which, the characterization of its electronic ground state is still debated more than 50 years after the first published study. Here, we show that to determine its electronic ground state, one needs a large corpus of data sets and a consistent theoretical methodology to simulate them. By simulating valence and core-shell electron spectra, we determined that the ground state is a 3Eg and that the ligand-to-metal charge transfer has a large influence on the spectra.

8.
Phys Chem Chem Phys ; 24(14): 8477-8487, 2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35404373

RESUMEN

We propose a novel approach for an indirect probing of conjugation and hyperconjugation in core-excited molecules using resonant Auger spectroscopy. Our work demonstrates that the changes in the electronic structure of thiophene (C4H4S) and thiazole (C3H3NS), occurring in the process of resonant sulfur K-shell excitation and Auger decay, affect the stabilisation energy resulting from π-conjugation and hyperconjugation. The variations in the stabilisation energy manifest themselves in the resonant S KL2,3L2,3 Auger spectra of thiophene and thiazole. The comparison of the results obtained for the conjugated molecules and for thiolane (C4H8S), the saturated analogue of thiophene, has been performed. The experimental observations are interpreted using high-level quantum-mechanical calculations and the natural bond orbital analysis.

9.
Molecules ; 27(10)2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35630640

RESUMEN

The side-chain of methionine residues is long enough to establish NH⋯S H-bonds with neighboring carbonyl groups of the backbone, giving rise to so-called intra-residue 6δ and inter-residue 7δ H-bonds. The aim of the present article is to document how the substitution of sulfur with a selenium atom affects the H-bonding of the Met system. This was investigated both experimentally and theoretically by conformation-resolved optical spectroscopy, following an isolated molecule approach. The present work emphasizes the similarities of the Met and Sem residues in terms of conformational structures, energetics, NH⋯Se/S H-bond strength and NH stretch spectral shifts, but also reveals subtle behavior differences between them. It provides evidence for the sensitivity of the H-bonding network with the folding type of the Sem/Met side-chains, where a simple flip of the terminal part of the side-chain can induce an extra 50 cm-1 spectral shift of the NH stretch engaged in a 7δ NH⋯S/Se bond.


Asunto(s)
Metionina , Selenio , Péptidos/química , Estructura Secundaria de Proteína , Proteínas/química , Análisis Espectral
10.
Amino Acids ; 53(4): 621-633, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33743071

RESUMEN

S-containing amino acids can lead to two types of local NH···S interactions which bridge backbone NH sites to the side chain to form either intra- or inter-residue H-bonds. The present work reports on the conformational preferences of S-methyl-L-cysteine, Cys(Me), using a variety of investigating tools, ranging from quantum chemistry simulations, gas-phase UV and IR laser spectroscopy, and solution state IR and NMR spectroscopies, on model compounds comprising one or two Cys(Me) residues. We demonstrate that in gas phase and in low polarity solution, the C- and N-capped model compound for one Cys(Me) residue adopts a preferred C5-C6γ conformation which combines an intra-residue N-H···O=C backbone interaction (C5) and an inter-residue N-H···S interaction implicating the side-chain sulfur atom (C6γ). In contrast, the dominant conformation of the C- and N-capped model compound featuring two consecutive Cys(Me) residues is a regular type I ß-turn. This structure is incompatible with concomitant C6γ interactions, which are no longer in evidence. Instead, C5γ interactions occur, that are fully consistent with the turn geometry and additionally stabilize the structure. Comparison with the thietane amino acid Attc, which exhibits a rigid cyclic side chain, pinpoints the significance of side chain flexibility for the specific conformational behavior of Cys(Me).


Asunto(s)
Cisteína/análogos & derivados , Cisteína/química , Gases , Enlace de Hidrógeno , Conformación Molecular , Teoría Cuántica , Soluciones , Análisis Espectral
11.
Phys Chem Chem Phys ; 22(36): 20409-20420, 2020 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-32914809

RESUMEN

Models of protein chains containing a seleno-cysteine (Sec) residue have been investigated by gas phase laser spectroscopy in order to document the effect of the H-bonding properties of the SeH group in the folding of the Sec side chain, by comparison with recent data on Ser- and Cys-containing sequences. Experimental data, complemented by quantum chemistry calculations and natural bonding orbital (NBO) analyses, are interpreted in terms of the formation of a so-called 5γ intra-residue motif, which bridges the acceptor chalcogen atom of the side chain to the NH bond of the same residue. This local structure, in which the O/S/Se atom is close to the plane of the N-terminal side amide, is constrained by local backbone-side chain hyperconjugation effects involving the S and Se atoms. Theoretical investigations of the Cys/Sec side chain show that (i) this 5γ motif is an intrinsic feature of these residues, (ii) the corresponding H-bond is strongly non-linear and intrinsically weak, (iii) but enhanced by γ- and ß-turn secondary structures, which promote a more favorable 5γ H-bonding approach and distance. The resulting H-bonds are slightly stronger in selenocysteine than in cysteine, but nearly inexistent in serine, whose side chain in contrast behaves as a H-bonding donor. The modest spectral shifts of the Cys/Sec NH stretches measured experimentally reflect the moderate strength of the 5γ H-bonding, in agreement with the correlation obtained with a NBO-based H-bond strength indicator. The evolution along the Ser, Cys and Sec series emphasizes the compromise between the several factors that control the H-bonding in a hyperconjugation-constrained geometry, among them the chalcogen van der Waals and covalent radii. It also illustrates the 5γ H-bond enhancements with the Sec and Cys residues favoured by the constraints imposed by the γ- and ß-turn structures of the peptide chain.


Asunto(s)
Cisteína/química , Dipéptidos/química , Selenocisteína/química , Enlace de Hidrógeno , Estructura Secundaria de Proteína , Teoría Cuántica , Serina/química , Análisis Espectral/métodos
12.
Phys Chem Chem Phys ; 22(36): 20284-20294, 2020 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-32966425

RESUMEN

A dual microwave and optical spectroscopic study of a capped cysteine amino acid isolated in a supersonic expansion, combined with quantum chemistry modelling, enabled us to characterize the conformational preferences of Cys embedded in a protein chain. IR/UV double resonance spectroscopy provided evidence for the coexistence of two conformers, assigned to folded and extended backbones (with classical C7 and C5 backbone H-bonding respectively), each of them additionally stabilized by specific main-chain/side-chain H-bonding, where the sulfur atom essentially plays the role of H-bond acceptor. The folded structure was confirmed by microwave spectroscopy, which demonstrated the validity of the DFT-D methods currently used in the field. These structural and spectroscopic results, complemented by a theoretical Natural Bond Orbital analysis, enabled us to document the capacity of the weakly polar -CH2-SH side chain of Cys to adapt itself to the intrinsic local preferences of the peptide backbone, i.e., a γ-turn or a ß-sheet extended secondary structure. The corresponding local H-bonding bridges the side chain acceptor S atom to the backbone NH donor site of the same or the next residue along the chain, through a 5- or a 6-membered ring respectively.


Asunto(s)
Cisteína/análogos & derivados , Dipéptidos/química , Teoría Funcional de la Densidad , Enlace de Hidrógeno , Microondas , Modelos Químicos , Conformación Proteica , Espectrofotometría Infrarroja , Espectrofotometría Ultravioleta , Termodinámica
13.
Phys Chem Chem Phys ; 21(17): 8827-8836, 2019 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-30972388

RESUMEN

The Si 1s-1, Si 2s-1, and Si 2p-1 photoelectron spectra of the SiX4 molecules with X = F, Cl, Br, CH3 were measured. From these spectra the Si 1s-1 and Si 2s-1 lifetime broadenings were determined, revealing a significantly larger value for the Si 2s-1 core hole of SiF4 than for the same core hole of the other molecules of the sequence. This finding is in line with the results of the Si 2p-1 core holes of a number of SiX4 molecules, with an exceptionally large broadening for SiF4. For the Si 2s-1 core hole of SiF4 the difference to the other SiX4 molecules can be explained in terms of Interatomic Coulomb Decay (ICD)-like processes. For the Si 2p-1 core hole of SiF4 the estimated values for the sum of the Intraatomic Auger Electron Decay (IAED) and ICD-like processes are too small to explain the observed linewidth. However, the results of the given discussion render for SiF4 significant contributions from Electron Transfer Mediated Decay (ETMD)-like processes at least plausible. On the grounds of our results, some more molecular systems in which similar processes can be observed are identified.

14.
Phys Chem Chem Phys ; 21(25): 13600-13610, 2019 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-31187832

RESUMEN

In molecular photoemission, the analogue of the celebrated Young's double slit experiment is coherent electron emission from two equivalent atomic centers, giving rise to an interference pattern. Here multi-slit interference is investigated in inner-valence photoionization of propane, n-butane, isobutane and methyl peroxide. A more complex pattern is observed due to molecular orbital delocalization in polyatomic molecules, blurring the distinction between interference and diffraction. The potential to extract geometrical information is emphasized, as a more powerful extension of the EXAFS technique. Accurate reproduction of experimental features is obtained by simulations at the static Density Functional Theory level.

15.
J Phys Chem A ; 123(35): 7619-7636, 2019 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-31386367

RESUMEN

We demonstrate that the possibility of monitoring relative photoionization cross sections over a large photon energy range allows us to study and disentangle shake processes and intramolecular inelastic scattering effects. In this gas-phase study, relative intensities of the carbon 1s photoelectron lines from chemically inequivalent carbon atoms in the same molecule have been measured as a function of the incident photon energy in the range of 300-6000 eV. We present relative cross sections for the chemically shifted carbon 1s lines in the photoelectron spectra of ethyl trifluoroacetate (the "ESCA" molecule). The results are compared with those of methyl trifluoroacetate and S-ethyl trifluorothioacetate as well as a series of chloro-substituted ethanes and 2-butyne. In the soft X-ray energy range, the cross sections show an extended X-ray absorption fine structure type of wiggles, as was previously observed for a series of chloroethanes. The oscillations are damped in the hard X-ray energy range, but deviations of cross-section ratios from stoichiometry persist, even at high energies. The current findings are supported by theoretical calculations based on a multiple scattering model. The use of soft and tender X-rays provides a more complete picture of the dominant processes accompanying photoionization. Such processes reduce the main photoelectron line intensities by 20-60%. Using both energy ranges enabled us to discern the process of intramolecular inelastic scattering of the outgoing electron, whose significance is otherwise difficult to assess for isolated molecules. This effect relates to the notion of the inelastic mean free path commonly used in photoemission studies of clusters and condensed matter.

16.
J Chem Phys ; 150(24): 244301, 2019 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-31255082

RESUMEN

Measurements on the strong-field ionization of carbonyl sulfide molecules by short, intense, 2 µm wavelength laser pulses are presented from experiments where angle-resolved photoelectron distributions were recorded with a high-energy velocity map imaging spectrometer, designed to reach a maximum kinetic energy of 500 eV. The laser-field-free elastic-scattering cross section of carbonyl sulfide was extracted from the measurements and is found in good agreement with previous experiments, performed using conventional electron diffraction. By comparing our measurements to the results of calculations, based on the quantitative rescattering theory, the bond lengths and molecular geometry were extracted from the experimental differential cross sections to a precision better than ±5 pm and in agreement with the known values.

17.
J Chem Phys ; 149(20): 204313, 2018 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-30501230

RESUMEN

The photodissociation dynamics of CH3I and CH2ClI at 272 nm were investigated by time-resolved Coulomb explosion imaging, with an intense non-resonant 815 nm probe pulse. Fragment ion momenta over a wide m/z range were recorded simultaneously by coupling a velocity map imaging spectrometer with a pixel imaging mass spectrometry camera. For both molecules, delay-dependent pump-probe features were assigned to ultraviolet-induced carbon-iodine bond cleavage followed by Coulomb explosion. Multi-mass imaging also allowed the sequential cleavage of both carbon-halogen bonds in CH2ClI to be investigated. Furthermore, delay-dependent relative fragment momenta of a pair of ions were directly determined using recoil-frame covariance analysis. These results are complementary to conventional velocity map imaging experiments and demonstrate the application of time-resolved Coulomb explosion imaging to photoinduced real-time molecular motion.

18.
Phys Rev Lett ; 116(21): 213001, 2016 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-27284654

RESUMEN

Creation of deep core holes with very short (τ≤1 fs) lifetimes triggers a chain of relaxation events leading to extensive nuclear dynamics on a few-femtosecond time scale. Here we demonstrate a general multistep ultrafast dissociation on an example of HCl following Cl 1s→σ^{*} excitation. Intermediate states with one or multiple holes in the shallower core electron shells are generated in the course of the decay cascades. The repulsive character and large gradients of the potential energy surfaces of these intermediates enable ultrafast fragmentation after the absorption of a hard x-ray photon.

19.
Phys Chem Chem Phys ; 18(22): 15133-42, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27199185

RESUMEN

We have measured resonant-Auger decay following Cl 1s(-1) excitations in HCl and CH3Cl molecules, and extracted the pseudo-cross sections of different Cl 2p(-2) final states. These cross sections show clear evidence of shake processes as well as contributions of electronic state-lifetime interference (ELI). To describe the spectra we developed a fit approach that takes into account ELI contributions and ultrafast nuclear dynamics in dissociative core-excited states. Using this approach we utilized the ELI contributions to obtain the intensity ratios of the overlapping states Cl 1s(-1)4pπ/1s(-1)4pσ in HCl and Cl 1s(-1)4pe/1s(-1)4pa1 in CH3Cl. The experimental value for HCl is compared with theoretical results showing satisfactory agreement.

20.
Phys Rev Lett ; 114(9): 093001, 2015 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-25793809

RESUMEN

Direct measurements of Ar^{+} 1s^{-1}2p^{-1}nl double-core-hole shake-up states are reported using conventional single-channel photoemission, offering a new and relatively easy means to study such species. The high-quality results yield accurate energies and lifetimes of the double-core-hole states. Their photoemission spectrum also can be likened to 1s absorption of an exotic argon ion with a 2p core vacancy, providing new information about the spectroscopy of both this unusual ionic state as well as the neutral atom.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA