RESUMEN
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra, leading to various motor and non-motor symptoms. Several cellular and molecular mechanisms such as alpha-synuclein (α-syn) accumulation, mitochondrial dysfunction, oxidative stress and neuroinflammation are involved in the pathogenesis of this disease. MicroRNAs (miRNAs) play important roles in post-transcriptional gene regulation. They are typically about 21-25 nucleotides in length and are involved in the regulation of gene expression by binding to the messenger RNA (mRNA) molecules. miRNAs like miR-221 play important roles in various biological processes, including development, cell proliferation, differentiation and apoptosis. miR-221 promotes neuronal survival against oxidative stress and neurite outgrowth and neuronal differentiation. Additionally, the role of miR-221 in PD has been investigated in several studies. According to the results of these studies, (1) miR-221 protects PC12 cells against oxidative stress induced by 6-hydroxydopamine; (2) miR-221 prevents Bax/caspase-3 signalling activation by stopping Bim; (3) miR-221 has moderate predictive power for PD; (4) miR-221 directly targets PTEN, and PTEN over-expression eliminates the protective action of miR-221 on p-AKT expression in PC12 cells; and (5) miRNA-221 controls cell viability and apoptosis by manipulating the Akt signalling pathway in PD. This review study suggested that miR-221 has the potential to be used as a clinical biomarker for PD diagnosis and stage assignment.
Asunto(s)
MicroARNs , Enfermedad de Parkinson , Ratas , Animales , Humanos , Enfermedad de Parkinson/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Apoptosis , Neuronas Dopaminérgicas/metabolismo , Biomarcadores/metabolismoRESUMEN
Colorectal cancer (CRC) is a common and highly metastatic cancer affecting people worldwide. Drug resistance and unwanted side effects are some of the limitations of current treatments for CRC. Naringenin (NAR) is a naturally occurring compound found in abundance in various citrus fruits such as oranges, grapefruits, and tomatoes. It possesses a diverse range of pharmacological and biological properties that are beneficial for human health. Numerous studies have highlighted its antioxidant, anticancer, and anti-inflammatory activities, making it a subject of interest in scientific research. This review provides a comprehensive overview of the effects of NAR on CRC. The study's findings indicated that NAR: (1) interacts with estrogen receptors, (2) regulates the expression of genes related to the p53 signaling pathway, (3) promotes apoptosis by increasing the expression of proapoptotic genes (Bax, caspase9, and p53) and downregulation of the antiapoptotic gene Bcl2, (4) inhibits the activity of enzymes involved in cell survival and proliferation, (5) decreases cyclin D1 levels, (6) reduces the expression of cyclin-dependent kinases (Cdk4, Cdk6, and Cdk7) and antiapoptotic genes (Bcl2, x-IAP, and c-IAP-2) in CRC cells. In vitro CDK2 binding assay was also performed, showing that the NAR derivatives had better inhibitory activities on CDK2 than NAR. Based on the findings of this study, NAR is a potential therapeutic agent for CRC. Additional pharmacology and pharmacokinetics studies are required to fully elucidate the mechanisms of action of NAR and establish the most suitable dose for subsequent clinical investigations.
Asunto(s)
Neoplasias Colorrectales , Flavanonas , Proteína p53 Supresora de Tumor , Humanos , Regulación hacia Abajo , Neoplasias Colorrectales/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-bcl-2 , Apoptosis , Proliferación CelularRESUMEN
Diabetes mellitus (DM) is a collection of metabolic disorder that is characterized by chronic hyperglycemia. Recent studies have demonstrated the crucial involvement of oxidative stress (OS) and inflammatory reactions in the development of DM. Curcumin (CUR), a natural compound derived from turmeric, exerts beneficial effects on diabetes mellitus through its interaction with the nuclear factor kappa B (NF-κB) pathway. Research indicates that CUR targets inflammatory mediators in diabetes, including tumor necrosis factor α (TNF-α) and interleukin-6 (IL-6), by modulating the NF-κB signaling pathway. By reducing the expression of these inflammatory factors, CUR demonstrates protective effects in DM by improving pancreatic ß-cells function, normalizing inflammatory cytokines, reducing OS and enhancing insulin sensitivity. The findings reveal that CUR administration effectively lowered blood glucose elevation, reinstated diminished serum insulin levels, and enhanced body weight in Streptozotocin -induced diabetic rats. CUR exerts its beneficial effects in management of diabetic complications through regulation of signaling pathways, such as calcium-calmodulin (CaM)-dependent protein kinase II (CaMKII), peroxisome proliferator-activated receptor gamma (PPAR-γ), NF-κB, and transforming growth factor ß1 (TGFB1). Moreover, CUR reversed the heightened expression of inflammatory cytokines (TNF-α, Interleukin-1 beta (IL-1ß), IL-6) and chemokines like MCP-1 in diabetic specimens, vindicating its anti-inflammatory potency in counteracting hyperglycemia-induced alterations. CUR diminishes OS, avert structural kidney damage linked to diabetic nephropathy, and suppress NF-κB activity. Furthermore, CUR exhibited a protective effect against diabetic cardiomyopathy, lung injury, and diabetic gastroparesis. Conclusively, the study posits that CUR could potentially offer therapeutic benefits in relieving diabetic complications through its influence on the NF-κB pathway.
Asunto(s)
Curcumina , Diabetes Mellitus Experimental , Diabetes Mellitus , FN-kappa B , Estrés Oxidativo , FN-kappa B/metabolismo , Curcumina/química , Curcumina/farmacología , Curcumina/uso terapéutico , Estrés Oxidativo/efectos de los fármacos , Diabetes Mellitus/tratamiento farmacológico , Diabetes Mellitus/metabolismo , Inflamación/tratamiento farmacológico , Interleucina-6/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Insulina/sangre , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Estreptozocina , Glucemia/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Animales , Ratas , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Quimiocina CCL2/metabolismo , Cardiomiopatías Diabéticas/prevención & control , Gastroparesia/prevención & control , Neuropatías Diabéticas/prevención & control , RatonesRESUMEN
Metformin (MET) is a preferred drug for the treatment of type 2 diabetes mellitus. Recent studies show that apart from its blood glucose-lowering effects, it also inhibits the development of various tumours, by inducing autophagy. Various studies have confirmed the inhibitory effects of MET on cancer cell lines' propagation, migration, and invasion. The objective of the study was to comprehensively review the potential of MET as an anticancer agent, particularly focusing on its ability to induce autophagy and inhibit the development and progression of various tumors. The study aimed to explore the inhibitory effects of MET on cancer cell proliferation, migration, and invasion, and its impact on key signaling pathways such as adenosine monophosphate-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR), and PI3K. This review noted that MET exerts its anticancer effects by regulating key signalling pathways such as phosphoinositide 3-kinase (PI3K), LC3-I and LC3-II, Beclin-1, p53, and the autophagy-related gene (ATG), inhibiting the mTOR protein, downregulating the expression of p62/SQSTM1, and blockage of the cell cycle at the G0/G1. Moreover, MET can stimulate autophagy through pathways associated with the 5' AMPK, thereby inhibiting he development and progression of various human cancers, including hepatocellular carcinoma, prostate cancer, pancreatic cancer, osteosarcoma, myeloma, and non-small cell lung cancer. In summary, this detailed review provides a framework for further investigations that may appraise the autophagy-induced anticancer potential of MET and its repurposing for cancer treatment.
Asunto(s)
Proteínas Quinasas Activadas por AMP , Autofagia , Metformina , Neoplasias , Transducción de Señal , Serina-Treonina Quinasas TOR , Metformina/farmacología , Humanos , Autofagia/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Transducción de Señal/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Proteínas Quinasas Activadas por AMP/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/química , AnimalesRESUMEN
BACKGROUND: Renal ischemia-reperfusion injury (RIRI) is a critical phenomenon that compromises renal function and is the most serious health concern related to acute kidney injury (AKI). Pioglitazone (Pio) is a known agonist of peroxisome proliferator-activated receptor-gamma (PPAR-γ). PPAR-γ is a nuclear receptor that regulates genes involved in inflammation, metabolism, and cellular differentiation. Activation of PPAR-γ is associated with antiinflammatory and antioxidant effects, which are relevant to the pathophysiology of RIRI. This study aimed to investigate the protective effects of Pio in RIRI, focusing on oxidative stress and inflammation. METHODS: We conducted a comprehensive literature search using electronic databases, including PubMed, ScienceDirect, Web of Science, Scopus, and Google Scholar. RESULTS: The results of this study demonstrated that Pio has antioxidant, anti-inflammatory, and anti-apoptotic activities that counteract the consequences of RIRI. The study also discussed the underlying mechanisms, including the modulation of various pathways such as TNF-α, NF-κB signaling systems, STAT3 pathway, KIM-1 and NGAL pathways, AMPK phosphorylation, and autophagy flux. Additionally, the study presented a summary of various animal studies that support the potential protective effects of Pio in RIRI. CONCLUSION: Our findings suggest that Pio could protect the kidneys from RIRI by improving antioxidant capacity and decreasing inflammation. Therefore, these findings support the potential of Pio as a therapeutic strategy for preventing RIRI in different clinical conditions.
Asunto(s)
Lesión Renal Aguda , Estrés Oxidativo , Pioglitazona , Daño por Reperfusión , Daño por Reperfusión/prevención & control , Daño por Reperfusión/metabolismo , Daño por Reperfusión/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Pioglitazona/farmacología , Pioglitazona/uso terapéutico , Humanos , Animales , Lesión Renal Aguda/prevención & control , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/tratamiento farmacológico , Antioxidantes/farmacología , PPAR gamma/metabolismo , PPAR gamma/agonistas , Inflamación/prevención & control , Inflamación/metabolismo , Inflamación/tratamiento farmacológico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Riñón/irrigación sanguínea , Transducción de Señal/efectos de los fármacos , Apoptosis/efectos de los fármacosRESUMEN
Parkinson's disease (PD) as a prevalent neurodegenerative condition impairs motor function and is caused by the progressive deterioration of nigrostriatal dopaminergic (DAergic) neurons. The current therapy solutions for PD are ineffective because they could not inhibit the disease's progression and they even have adverse effects. Natural polyphenols, a group of phytochemicals, have been found to offer various health benefits, including neuroprotection against PD. Among these, resveratrol (RES) has neuroprotective properties owing to its capacity to protect mitochondria and act as an antioxidant. An increase in the formation of reactive oxygen species (ROS) leads to oxidative stress (OS), which is responsible for cellular damage resulting in lipid peroxidation, oxidative protein alteration, and DNA damage. In PD models, it's been discovered that RES pretreatment can diminish oxidative stress by boosting endogenous antioxidant status and directly scavenging ROS. Several studies have examined the involvement of RES in the modulation of the transcriptional factor Nrf2 in PD models because this protein recognizes oxidants and controls the antioxidant defense. In this review, we have examined the molecular mechanisms underlying the RES activity and reviewed its effects in both in vitro and in vivo models of PD. The gathered evidence herein showed that RES treatment provides neuroprotection against PD by reducing OS and upregulation of Nrf2. Moreover, in the present study, scientific proof of the neuroprotective properties of RES against PD and the mechanism supporting clinical development consideration has been described.
Asunto(s)
Fármacos Neuroprotectores , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Resveratrol/farmacología , Resveratrol/uso terapéutico , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Antioxidantes/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Estrés Oxidativo , Transducción de Señal , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéuticoRESUMEN
Traumatic brain injury (TBI) is a type of brain injury resulting from a sudden physical force to the head. TBI can range from mild, such as a concussion, to severe, which might result in long-term complications or even death. The initial impact or primary injury to the brain is followed by neuroinflammation, excitotoxicity, and oxidative stress, which are the hallmarks of the secondary injury phase, that can further damage the brain tissue. Dexamethasone (DXM) has neuroprotective effects. It reduces neuroinflammation, a critical factor in secondary injury-associated neuronal damage. DXM can also suppress the microglia activation and infiltrated macrophages, which are responsible for producing pro-inflammatory cytokines that contribute to neuroinflammation. Considering the outcomes of this research, some of the effects of DXM on TBI include: (1) DXM-loaded hydrogels reduce apoptosis, neuroinflammation, and lesion volume and improves neuronal cell survival and motor performance, (2) DXM treatment elevates the levels of Ndufs2, Gria3, MAOB, and Ndufv2 in the hippocampus following TBI, (3) DXM decreases the quantity of circulating endothelial progenitor cells, (4) DXM reduces the expression of IL1, (5) DXM suppresses the infiltration of RhoA + cells into primary lesions of TBI and (6) DXM treatment led to an increase in fractional anisotropy values and a decrease in apparent diffusion coefficient values, indicating improved white matter integrity. According to the study, the findings show that DXM treatment has neuroprotective effects in TBI. This indicates that DXM is a promising therapeutic approach to treating TBI.
Asunto(s)
Lesiones Traumáticas del Encéfalo , Fármacos Neuroprotectores , Animales , Ratones , Enfermedades Neuroinflamatorias , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Inflamación/metabolismo , Dexametasona/farmacología , Modelos Animales de Enfermedad , Microglía , Ratones Endogámicos C57BL , NADH Deshidrogenasa/metabolismo , NADH Deshidrogenasa/farmacología , NADH Deshidrogenasa/uso terapéuticoRESUMEN
Human Monkeypox (HMPX) outbreak in the year 2022 occurs in many countries outside of the African regions, a common location of such outbreaks, with a considerable rate of human-to-human transmission, which was an uncommon route of infection before. The epidemiological reports also represent a sharping pace of infection spreading between communities rather than in previous outbreaks as the following pace of afflictions is unpredictable. Also, the cautions regarding the sexually transmitted infection of the such virus have been raised in this outbreak. Further, the main reservoirs of the recent outbreaks are yet to be revealed. As a consequence, the World Health Organization (WHO) has declared the 2022 HMPX outbreak as an "Atypical" phenomenon compared to its previous characteristics. To better recognize the properties of this outbreak, herein we systematically described and compared the historical evidence of monkeypox virus outbreaks in the aspects of epidemiological, clinical, and molecular evolutions since its emergence, as well as an explanation of the previous investigations and considerations of WHO and other international health societies over time. The history of human and monkeypox virus interaction during the past 64 years provides viewpoints on preventing strategies and assessing the present and potential future hazards of health implications.
Asunto(s)
Mpox , Humanos , Mpox/epidemiología , Monkeypox virus , Brotes de EnfermedadesRESUMEN
Cancer can be considered as a communication disease between and within cells; nevertheless, there is no effective therapy for the condition, and this disease is typically identified at its late stage. Chemotherapy, radiation, and molecular-targeted treatment are typically ineffective against cancer cells. A better grasp of the processes of carcinogenesis, aggressiveness, metastasis, treatment resistance, detection of the illness at an earlier stage, and obtaining a better therapeutic response will be made possible. Researchers have discovered that cancerous mutations mainly affect signaling pathways. The Hippo pathway, as one of the main signaling pathways of a cell, has a unique ability to cause cancer. In order to treat cancer, a complete understanding of the Hippo signaling system will be required. On the other hand, interaction with other pathways like Wnt, TGF-ß, AMPK, Notch, JNK, mTOR, and Ras/MAP kinase pathways can contribute to carcinogenesis. Phosphorylation of oncogene YAP and TAZ could lead to leukemogenesis, which this process could be regulated via other signaling pathways. This review article aimed to shed light on how the Hippo pathway interacts with other cellular signaling networks and its functions in leukemia.
RESUMEN
BACKGROUND: Despite several hundred clinical trials of drugs that initially showed promise, there has been limited clinical improvement in Alzheimer's disease (AD). This may be attributed to the existence of at least 25 abnormal cellular pathways that underlie the disease. It is improbable for a single drug to address all or most of these pathways, thus even drugs that show promise when administered alone are unlikely to produce significant results. According to previous studies, eight drugs, namely, dantrolene, erythropoietin, lithium, memantine, minocycline, piracetam, riluzole, and silymarin, have been found to target multiple pathways that are involved in the development of AD. Among these drugs, riluzole is currently indicated for the treatment of medical conditions in both adult patients and children and has gained increased attention from scientists due to its potential in the excitotoxic hypothesis of neurodegenerative diseases. OBJECTIVE: The aim of this study was to investigate the effects of drugs on AD based on cellular and molecular mechanisms. METHODS: The literature search for this study utilized the Scopus, ScienceDirect, PubMed, and Google Scholar databases to identify relevant articles. RESULTS: Riluzole exerts its effects in AD through diverse pathways including the inhibition of voltage-dependent sodium and calcium channels, blocking AMPA and NMDA receptors and inhibiting the release of glutamic acid release and stimulation of EAAT1-EAAT2. CONCLUSION: In this review article, we aimed to review the neuroprotective properties of riluzole, a glutamate modulator, in AD, which could benefit patients with the disease.
Asunto(s)
Enfermedad de Alzheimer , Fármacos Neuroprotectores , Niño , Humanos , Riluzol/farmacología , Riluzol/uso terapéutico , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Antagonistas de Aminoácidos Excitadores/farmacología , Antagonistas de Aminoácidos Excitadores/uso terapéutico , Memantina/farmacología , Memantina/uso terapéuticoRESUMEN
BACKGROUND: Breast cancer (BC) continues to be a significant global health issue, with a rising number of cases requiring ongoing research and innovation in treatment strategies. Curcumin (CUR), a natural compound derived from Curcuma longa, and similar compounds have shown potential in targeting the STAT3 signaling pathway, which plays a crucial role in BC progression. AIMS: The aim of this study was to investigate the effects of curcumin and its analogues on BC based on cellular and molecular mechanisms. MATERIALS & METHODS: The literature search conducted for this study involved utilizing the Scopus, ScienceDirect, PubMed, and Google Scholar databases in order to identify pertinent articles. RESULTS: This narrative review explores the potential of CUR and similar compounds in inhibiting STAT3 activation, thereby suppressing the proliferation of cancer cells, inducing apoptosis, and inhibiting metastasis. The review demonstrates that CUR directly inhibits the phosphorylation of STAT3, preventing its movement into the nucleus and its ability to bind to DNA, thereby hindering the survival and proliferation of cancer cells. CUR also enhances the effectiveness of other therapeutic agents and modulates the tumor microenvironment by affecting tumor-associated macrophages (TAMs). CUR analogues, such as hydrazinocurcumin (HC), FLLL11, FLLL12, and GO-Y030, show improved bioavailability and potency in inhibiting STAT3, resulting in reduced cell proliferation and increased apoptosis. CONCLUSION: CUR and its analogues hold promise as effective adjuvant treatments for BC by targeting the STAT3 signaling pathway. These compounds provide new insights into the mechanisms of action of CUR and its potential to enhance the effectiveness of BC therapies.
RESUMEN
Glaucoma, an irreversible optic neuropathy, primarily affects retinal ganglion cells (RGC) and causes vision loss and blindness. The damage to RGCs in glaucoma occurs by various mechanisms, including elevated intraocular pressure, oxidative stress, inflammation, and other neurodegenerative processes. As the disease progresses, the loss of RGCs leads to vision loss. Therefore, protecting RGCs from damage and promoting their survival are important goals in managing glaucoma. In this regard, resveratrol (RES), a polyphenolic phytoalexin, exerts antioxidant effects and slows down the evolution and progression of glaucoma. The present review shows that RES plays a protective role in RGCs in cases of ischemic injury and hypoxia as well as in ErbB2 protein expression in the retina. Additionally, RES plays protective roles in RGCs by promoting cell growth, reducing apoptosis, and decreasing oxidative stress in H2O2-exposed RGCs. RES was also found to inhibit oxidative stress damage in RGCs and suppress the activation of mitogen-activated protein kinase signaling pathways. RES could alleviate retinal function impairment by suppressing the hypoxia-inducible factor-1 alpha/vascular endothelial growth factor and p38/p53 axes while stimulating the PI3K/Akt pathway. Therefore, RES might exert potential therapeutic effects for managing glaucoma by protecting RGCs from damage and promoting their survival.
Asunto(s)
Glaucoma , Fármacos Neuroprotectores , Resveratrol , Células Ganglionares de la Retina , Resveratrol/farmacología , Resveratrol/uso terapéutico , Células Ganglionares de la Retina/efectos de los fármacos , Glaucoma/tratamiento farmacológico , Animales , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Estrés Oxidativo/efectos de los fármacosRESUMEN
Orthodontic tooth movement (OTM) is a critical process in dental alignment, driven by the application of calibrated orthodontic forces. This study delves into the intricate molecular and cellular mechanisms by which vitamin D3 influences OTM. Vitamin D3 is identified as a critical regulator in bone metabolism, enhancing osteoblast activity and bone formation while also modulating osteoclast quantity and RANKL expression, essential for the remodeling of the alveolar bone. The precise mechanisms through which vitamin D3 facilitates these processes are explored, highlighting its potential in accelerating bone remodeling and, consequently, tooth alignment. This comprehensive review underscores vitamin D3's anabolic impact on bone metabolism and its pivotal role in the synthesis and mineralization processes governed by osteoblasts. The findings illuminate vitamin D3's promise in augmenting orthodontic therapy, suggesting its utility in improving treatment efficiency and reducing duration. However, the need for further research into the optimal application of vitamin D3 in orthodontics is emphasized, particularly concerning dosage, timing, and delivery methods.
RESUMEN
Background: Tumor cells proliferation and apoptosis inhibition are the mechanisms through which the Colorectal Cancer (CRC) progression, metastasis and chemoresistance are promoted pathologically, offering clinical advantages for characterizing their molecular regulators. Objectives: In this study, to unravel the role of PIWIL2 as a potential CRC oncogenic regulator, we examined the effect of its overexpression on proliferation, apoptosis and colony formation of SW480 colon cancer cell line. Material and Methods: Established SW480-P (overexpression of PIWIL2) and SW480-control (SW480-empty vector) cell lines were cultured in DMEM containing 10% FBS with 1% penicillin-streptomycin. The total DNA and RNA was extracted for further experiments. Real-Time PCR and western blotting assay were performed to measure the differential expression of proliferation associated genes including the expression of cell cycle and anti-apoptotic genes as well as Ki-67 and PIWIL2 in both cell lines. Cell proliferation was determined using MTT assay, doubling time assay and the colony formation rate of transfected cells was measured with the 2D colony formation assay. Results: At the molecular level, PIWIL2 overexpression was associated with significant up-regulation of cyclin D1, STAT3, BCL2-L1, BCL2-L2 and Ki-67 genes. MTT and doubling time assay showed that PIWIL2 expression induced time-related effects on proliferation rate of SW480 cells. Moreover, SW480-P cells had markedly greater capacity to form colonies. Conclusions: PIWIL2 plays important roles to promote cancer cell proliferation and colonization via the cell cycle acceleration and inhibition of apoptosis, the mechanisms through which this gene seems to contribute to CRC development, metastasis and chemoresistance, hence potentially highlighting PIWIL2 targeted therapy as a valuable tool for CRC treatment.
RESUMEN
Background: Piwi-like RNA-mediated gene silencing 2 (PIWIL2) is a member of AGO/PIWI gene family, which is enriched in cancer stem cells (CSCs). The purpose of this research was to investigate the overexpression of PIWIL2 and its role in the induction of EMT and CSC properties in MCF7 breast cancer cell line. Materials and Methods: MCF7 cells were transfected with the human gene PIWIL2 (Hili) under the control of CMV promoter utilizing the neon electroporation method. Subsequently, the selection was conducted using G418, and doubling time was calculated in the transformed and control cells. RT and real-time PCR were also performed to analyze the expression of epithelial and mesenchymal genes and those related to CSCs. Results: According to the observations from this study, transfecting MCF7 cells with PIWIL2 triggered the conversion of epithelial cells to mesenchymal cells and induced the genes specific for breast CSCs, which was coincident with 9-h reduction in the doubling time of the transfected cells. Furthermore, the molecular analyses revealed a significant reduction in the expression of epithelial markers, while a significant increase was detected in the expression of mesenchymal genes and many CSC biomarkers. Conclusion: PIWIL2 protein acts as a master regulatory protein that is able to manipulate the transcription through specific signaling pathways, which allow the cells to gain stem cell-like properties.
RESUMEN
Introduction: The prognosis for glioblastoma multiforme (GBM), a malignant brain tumor, is poor despite recent advancements in treatments. Suicide gene therapy is a therapeutic strategy for cancer that requires a gene to encode a prodrug-activating enzyme which is then transduced into a vector, such as mesenchymal stem cells (MSCs). The vector is then injected into the tumor tissue and exerts its antitumor effects. Case presentation: A 37-year-old man presented to our department with two evident foci of glioblastoma multiforme at the left frontal and left parietal lobes. The patient received an injection of bone marrow-derived MSCs delivering the herpes simplex virus thymidine kinase (HSV-tk) gene to the frontal focus of the tumor, followed by ganciclovir administration as a prodrug for 14 days. For follow-up, the patient was periodically assessed using magnetic resonance imaging (MRI). The growth and recurrence patterns of the foci were assessed. After the injection on 09 February 2019, the patient's follow-up appointment on 19 December 2019 MRI revealed a recurrence of parietal focus. However, the frontal focus had a slight and unremarkable enhancement. On the last follow-up (18 March 2020), the left frontal focus had no prominent recurrence; however, the size of the left parietal focus increased and extended to the contralateral hemisphere through the corpus callosum. Eventually, the patient passed away on 16 July 2020 (progression-free survival (PFS) = 293 days, overall survival (OS) = 513 days). Conclusion: The gliomatous focus (frontal) treated with bone marrow-derived MSCs carrying the HSV-TK gene had a different pattern of growth and recurrence compared with the non-treated one (parietal). Trial registration: IRCT20200502047277N2. Registered 10 May 2020-Retrospectively registered, https://eng.irct.ir/trial/48110.
RESUMEN
Colon cancer (CC) is one of the most common and deadly cancers worldwide. Oncologists are facing challenges such as development of drug resistance and lack of suitable drug options for CC treatment. Flavonoids are a group of natural compounds found in fruits, vegetables, and other plant-based foods. According to research, they have a potential role in the prevention and treatment of cancer. Apigenin is a flavonoid that is present in many fruits and vegetables. It has been used as a natural antioxidant for a long time and has been considered due to its anticancer effects and low toxicity. The results of this review study show that apigenin has potential anticancer effects on CC cells through various mechanisms. In this comprehensive review, we present the cellular targets and signaling pathways of apigenin indicated to date in in vivo and in vitro CC models. Among the most important modulated pathways, Wnt/ß-catenin, PI3K/AKT/mTOR, MAPK/ERK, JNK, STAT3, Bcl-xL and Mcl-1, PKM2, and NF-kB have been described. Furthermore, apigenin suppresses the cell cycle in G2/M phase in CC cells. In CC cells, apigenin-induced apoptosis is increased by inhibiting the formation of autophagy. According to the results of this study, apigenin appears to have the potential to be a promising agent for CC therapy, but more research is required in the field of pharmacology and pharmacokinetics to establish the apigenin effects and its dosage for clinical studies.
RESUMEN
Non-alcoholic fatty liver disease (NAFLD) is frequently linked to metabolic disorders and is prevalent in obese and diabetic patients. The pathophysiology of NAFLD involves multiple factors, including insulin resistance (IR), oxidative stress (OS), inflammation, and genetic predisposition. Recently, there has been an emphasis on the use of herbal remedies with many people around the world resorting to phytonutrients or nutraceuticals for treatment of numerous health challenges in various national healthcare settings. Pomegranate (Punica granatum) parts, such as juice, peel, seed and flower, have high polyphenol content and is well known for its antioxidant capabilities. Pomegranate polyphenols, such as hydrolyzable tannins, anthocyanins, and flavonoids, have high antioxidant capabilities that can help lower the OS and inflammation associated with NAFLD. The study aimed to investigate whether pomegranate parts could attenuate OS, inflammation, and other risk factors associated with NAFLD, and ultimately prevent the development of the disease. The findings of this study revealed that: 1. pomegranate juice contains hypoglycemic qualities that can assist manage blood sugar levels, which is vital for avoiding and treating NAFLD. 2. Polyphenols from pomegranate flowers increase paraoxonase 1 (PON1) mRNA and protein levels in the liver, which can help protect liver enzymes and prevent NAFLD. 3. Punicalagin (PU) is one of the major ellagitannins found in pomegranate, and PU-enriched pomegranate extract (PE) has been shown to inhibit HFD-induced hyperlipidemia and hepatic lipid deposition in rats. 4. Pomegranate fruit consumption, which is high in antioxidants, can decrease the activity of AST and ALT (markers of liver damage), lower TNF-α (a marker of inflammation), and improve overall antioxidant capacity in NAFLD patients. Overall, the polyphenols in pomegranate extracts have antioxidant, anti-inflammatory, hypoglycemic, and protective effects on liver enzymes, which can help prevent and manage NAFLD effects on liver enzymes, which can help prevent and manage NAFLD.
RESUMEN
Signal transducers and activators of transcription 3 (STAT 3) have been proposed to be responsible for breast cancer development. Moreover, evidence depicted that upregulation of STAT3 is responsible for angiogenesis, metastasis, and chemo-resistance of breast cancer. Tamoxifen (TAM) resistance is a major concern in breast cancer management which is mediated by numerous signaling pathways such as STAT3. Therefore, STAT3 targeting inhibitors would be beneficial in breast cancer treatment. The information on the topic in this review was gathered from scientific databases such as PubMed, Scopus, Google Scholar, and ScienceDirect. The present review highlights STAT3 signaling axis discoveries and TAM targeting STAT3 in breast cancer. Based on the results of this study, we found that following prolonged TAM treatment, STAT3 showed overexpression and resulted in drug resistance. Moreover, it was concluded that STAT3 plays an important role in breast cancer stem cells, which correlated with TAM resistance.
Asunto(s)
Neoplasias de la Mama , Tamoxifeno , Humanos , Femenino , Tamoxifeno/farmacología , Tamoxifeno/uso terapéutico , Neoplasias de la Mama/patología , Antineoplásicos Hormonales/farmacología , Antineoplásicos Hormonales/uso terapéutico , Resistencia a Antineoplásicos , Transducción de Señal , Línea Celular Tumoral , Factor de Transcripción STAT3/metabolismoRESUMEN
BACKGROUND: Tamoxifen (TAM) is often recommended as a first-line treatment for estrogen receptor-positive breast cancer (BC). However, TAM resistance continues to be a medical challenge for BC with hormone receptor positivity. The function of macro-autophagy and autophagy has recently been identified to be altered in BC, which suggests a potential mechanism for TAM resistance. Autophagy is a cellular stress-induced response to preserve cellular homeostasis. Also, therapy-induced autophagy, which is typically cytoprotective and activated in tumor cells, could sometimes be non-protective, cytostatic, or cytotoxic depending on how it is regulated. OBJECTIVE: This review explored the literature on the connections between hormonal therapies and autophagy. We investigated how autophagy could develop drug resistance in BC cells. METHODS: Scopus, Science Direct, PubMed, and Google Scholar were used to search articles for this study. RESULTS: The results demonstrated that protein kinases such as pAMPK, BAX, and p-p70S6K could be a sign of autophagy in developing TAM resistance. According to the study's findings, autophagy plays an important role in BC patients' TAM resistance. CONCLUSION: Therefore, by overcoming endocrine resistance in estrogen receptor-positive breast tumors, autophagy inhibition may improve the therapeutic efficacy of TAM.