Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Pharm ; 622: 121667, 2022 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-35304243

RESUMEN

M2e VLP was previously described as a vaccine that incorporates the extracellular region of the matrix 2 protein (M2e), which is highly conserved amongst all the strains of influenza. In this study, we analyzed activation status of dendritic cells (DCs) after exposure to M2e VLP, stimulating DCs with M2e VLP and co-culturing the stimulated DCs with T cells to observe innate and adaptive immune responses. The M2e VLP microparticle was prepared by encapsulating into a polymer matrix using the one-step spray drying method. Adjuvants Alhydrogel®, MPL-A® or AddavaxTM were used to enhance the DC stimulatory effects by the M2e VLP microparticle. The M2e VLP microparticle yield was found to be 92% and the encapsulation yield was around 84% with a size of approximately 2.78 µm. There was no short-term cytotoxicity found in DCs and macrophages with concentrations up to 1500 µg/mL of M2e VLP microparticle, however long-term exposure resulted in 25% decrease in viability of cells with concentrations more than or equal to 500 µg/mL. The M2e VLP microparticle vaccine with Alhydrogel® and MPL-A® induced high levels of TNFα in both DCs and macrophages. The high levels of MHC I, II, CD28, B7-1, ICAM-1, LFA-1 expression and IL-12 release in the M2e VLP microparticle group with Alhydrogel® suggests that the M2e VLP vaccine with this adjuvant activated T cells via the Th2 pathway. The increased expression of MHC I, II, CD40, CD154, ICAM-1 and LFA-1 on DCs and the release of IL-12 in the M2e VLP microparticle culture of DCs with MPL-A® demonstrated that the M2e VLP vaccine with this adjuvant activated T cells via the Th1 pathway. The decrease in fluorescence in the Alhydrogel® and MPL-A® group illustrates the proliferation of T cells took place following exposure of DCs to the M2e VLP microparticle with these adjuvants. The M2e VLP microparticle exhibited higher stimulatory responses of DCs than the M2e VLP in suspension. Furthermore, the presence of Alhydrogel® and MPL-A® enhanced the stimulatory effects of DCs by the M2e VLP microparticle (MP) vaccine.


Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Infecciones por Orthomyxoviridae , Vacunas de Partículas Similares a Virus , Adyuvantes Inmunológicos/farmacología , Hidróxido de Aluminio , Animales , Anticuerpos Antivirales , Células Dendríticas , Humanos , Gripe Humana/prevención & control , Molécula 1 de Adhesión Intercelular , Interleucina-12 , Antígeno-1 Asociado a Función de Linfocito , Ratones , Ratones Endogámicos BALB C , Infecciones por Orthomyxoviridae/prevención & control
2.
Cell Rep Med ; 3(2): 100509, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35243417

RESUMEN

The induction of broadly neutralizing antibodies (bNAbs) that target the hemagglutinin stalk domain is a promising strategy for the development of "universal" influenza virus vaccines. bNAbs can be boosted in adults by sequential exposure to heterosubtypic viruses through natural infection or vaccination. However, little is known about if or how bNAbs are induced by vaccination in more immunologically naive children. Here, we describe the impact of repeated seasonal influenza vaccination and vaccine type on induction of bNAbs against group 1 influenza viruses in a pediatric cohort enrolled in randomized controlled trials of seasonal influenza vaccination. Repeated seasonal vaccination results in significant boosting of a durable bNAb response. Boosting of serological bNAb titers is comparable within inactivated and live attenuated (LAIV) vaccinees and declines with age. These data provide insights into vaccine-elicited bNAb induction in children, which have important implications for the design of universal influenza vaccine modalities in this critical population.


Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Adulto , Anticuerpos ampliamente neutralizantes , Niño , Humanos , Gripe Humana/prevención & control , Estaciones del Año , Vacunas Atenuadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA