Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Physiol ; 171(4): 2418-31, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27325663

RESUMEN

The interaction between cellulose and xylan is important for the load-bearing secondary cell wall of flowering plants. Based on the precise, evenly spaced pattern of acetyl and glucuronosyl (MeGlcA) xylan substitutions in eudicots, we recently proposed that an unsubstituted face of xylan in a 2-fold helical screw can hydrogen bond to the hydrophilic surfaces of cellulose microfibrils. In gymnosperm cell walls, any role for xylan is unclear, and glucomannan is thought to be the important cellulose-binding polysaccharide. Here, we analyzed xylan from the secondary cell walls of the four gymnosperm lineages (Conifer, Gingko, Cycad, and Gnetophyta). Conifer, Gingko, and Cycad xylan lacks acetylation but is modified by arabinose and MeGlcA. Interestingly, the arabinosyl substitutions are located two xylosyl residues from MeGlcA, which is itself placed precisely on every sixth xylosyl residue. Notably, the Gnetophyta xylan is more akin to early-branching angiosperms and eudicot xylan, lacking arabinose but possessing acetylation on alternate xylosyl residues. All these precise substitution patterns are compatible with gymnosperm xylan binding to hydrophilic surfaces of cellulose. Molecular dynamics simulations support the stable binding of 2-fold screw conifer xylan to the hydrophilic face of cellulose microfibrils. Moreover, the binding of multiple xylan chains to adjacent planes of the cellulose fibril stabilizes the interaction further. Our results show that the type of xylan substitution varies, but an even pattern of xylan substitution is maintained among vascular plants. This suggests that 2-fold screw xylan binds hydrophilic faces of cellulose in eudicots, early-branching angiosperm, and gymnosperm cell walls.


Asunto(s)
Pared Celular/metabolismo , Celulosa/metabolismo , Cycadopsida/metabolismo , Magnoliopsida/metabolismo , Xilanos/metabolismo , Acetilación , Evolución Biológica , Pared Celular/química , Celulosa/química , Simulación por Computador , Cycadopsida/química , Magnoliopsida/química , Modelos Moleculares , Simulación de Dinámica Molecular , Xilanos/química
2.
Plant J ; 79(3): 492-506, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24889696

RESUMEN

The interaction between xylan and cellulose microfibrils is important for secondary cell wall properties in vascular plants; however, the molecular arrangement of xylan in the cell wall and the nature of the molecular bonding between the polysaccharides are unknown. In dicots, the xylan backbone of ß-(1,4)-linked xylosyl residues is decorated by occasional glucuronic acid, and approximately one-half of the xylosyl residues are O-acetylated at C-2 or C-3. We recently proposed that the even, periodic spacing of GlcA residues in the major domain of dicot xylan might allow the xylan backbone to fold as a twofold helical screw to facilitate alignment along, and stable interaction with, cellulose fibrils; however, such an interaction might be adversely impacted by random acetylation of the xylan backbone. Here, we investigated the arrangement of acetyl residues in Arabidopsis xylan using mass spectrometry and NMR. Alternate xylosyl residues along the backbone are acetylated. Using molecular dynamics simulation, we found that a twofold helical screw conformation of xylan is stable in interactions with both hydrophilic and hydrophobic cellulose faces. Tight docking of xylan on the hydrophilic faces is feasible only for xylan decorated on alternate residues and folded as a twofold helical screw. The findings suggest an explanation for the importance of acetylation for xylan-cellulose interactions, and also have implications for our understanding of cell wall molecular architecture and properties, and biological degradation by pathogens and fungi. They will also impact strategies to improve lignocellulose processing for biorefining and bioenergy.


Asunto(s)
Arabidopsis/metabolismo , Pared Celular/metabolismo , Celulosa/metabolismo , Xilanos/metabolismo , Acetilación
3.
J Comput Chem ; 33(14): 1338-46, 2012 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-22419406

RESUMEN

Cellulose-builder is a user-friendly program that builds crystalline structures of cellulose of different sizes and geometries. The program generates Cartesian coordinates for all atoms of the specified structure in the Protein Data Bank format, suitable for using as starting configurations in molecular dynamics simulations and other calculations. Crystalline structures of cellulose polymorphs Iα, Iß, II, and III(I) of practically any size are readily constructed which includes parallelepipeds, plant cell wall cellulose elementary fibrils of any length, and monolayers. Periodic boundary conditions along the crystallographic directions are easily imposed. The program also generates atom connectivity file in PSF format, required by well-known simulation packages such as NAMD, CHARMM, and others. Cellulose-builder is based on the Bash programming language and should run on practically any Unix-like platform, demands very modest hardware, and is freely available for download from ftp://ftp.iqm.unicamp.br/pub/cellulose-builder.


Asunto(s)
Celulosa/química , Programas Informáticos , Cristalización , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Conformación Molecular
4.
J Phys Chem B ; 115(24): 7940-9, 2011 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-21619042

RESUMEN

Glycosyl hydrolases are enzymes capable of breaking the glycosidic linkage of polysaccharides and have considerable industrial and biotechnological applications. Driven by the later applications, it is frequently desirable that glycosyl hydrolases display stability and activity under extreme environment conditions, such as high temperatures and extreme pHs. Here, we present X-ray structure of the hyperthermophilic laminarinase from Rhodothermus marinus (RmLamR) determined at 1.95 Å resolution and molecular dynamics simulation studies aimed to comprehend the molecular basis for the thermal stability of this class of enzymes. As most thermostable proteins, RmLamR contains a relatively large number of salt bridges, which are not randomly distributed on the structure. On the contrary, they form clusters interconnecting ß-sheets of the catalytic domain. Not all salt bridges, however, are beneficial for the protein thermostability: the existence of charge-charge interactions permeating the hydrophobic core of the enzymes actually contributes to destabilize the structure by facilitating water penetration into hydrophobic cavities, as can be seen in the case of mesophilic enzymes. Furthermore, we demonstrate that the mobility of the side-chains is perturbed differently in each class of enzymes. The side-chains of loop residues surrounding the catalytic cleft in the mesophilic laminarinase gain mobility and obstruct the active site at high temperature. By contrast, thermophilic laminarinases preserve their active site flexibility, and the active-site cleft remains accessible for recognition of polysaccharide substrates even at high temperatures. The present results provide structural insights into the role played by salt-bridges and active site flexibility on protein thermal stability and may be relevant for other classes of proteins, particularly glycosyl hydrolases.


Asunto(s)
Celulasas/química , Simulación de Dinámica Molecular , Rhodothermus/enzimología , Secuencia de Aminoácidos , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , Datos de Secuencia Molecular , Estabilidad Proteica , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA