Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Mol Hum Reprod ; 25(9): 519-526, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31211841

RESUMEN

Our current knowledge of the mechanisms leading to human primordial germ cell (PGC) specification stems solely from differentiation experiments starting from human pluripotent stem cells. However, information regarding the origin of PGCs in vivo remains obscure. Here we apply an improved system for extended in vitro culture of human embryos to investigate the presence of PGC-like cells (PGCLCs) 12 days post fertilization (dpf). Good quality blastocysts (n = 141) were plated at 6 dpf and maintained in hypoxia, in medium supplemented with Activin A until 12 dpf. We primarily reveal that 12 dpf outgrowths recapitulate human peri-implantation events and demonstrate that blastocyst quality significantly impacts both embryo viability at 12 dpf, as well as the presence of POU5F1+ cells within viable outgrowths. Moreover, detailed examination of 12 dpf blastocyst outgrowths revealed a population of POU5F1+, SOX2- and SOX17+ cells that may correspond to PGCLCs, alongside POU5F1+ epiblast-like cells and GATA6+ endoderm-like cells. Our findings suggest that, in human, PGC precursors may become specified within the epiblast and migrate either transiently to the extra-embryonic mesoderm or directly to the dorsal part of the yolk sac endoderm around 12 dpf. This is a descriptive analysis and as such the conclusion that POU5F1+ and SOX17+ cells represent bona fide PGCs can only be considered as preliminary. In the future, other PGC markers may be used to further validate the observed cell populations. Overall, our findings provide insights into the origin of the human germline and may serve as a foundation to further unravel the molecular mechanisms governing PGC specification in human.


Asunto(s)
Blastocisto/citología , Blastocisto/fisiología , Linaje de la Célula/fisiología , Células Germinativas/citología , Células Germinativas/fisiología , Diferenciación Celular , Supervivencia Celular , Células Cultivadas , Técnicas de Cultivo de Embriones , Implantación del Embrión/fisiología , Embrión de Mamíferos , Estratos Germinativos/citología , Estratos Germinativos/fisiología , Humanos , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/fisiología , Seudópodos/fisiología
2.
Mol Hum Reprod ; 24(5): 233-243, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29528446

RESUMEN

STUDY QUESTION: Which set of antibodies can be used to identify migratory and early post-migratory human primordial germ cells (hPGCs)? STUDY FINDING: We validated the specificity of 33 antibodies for 31 markers, including POU5F1, NANOG, PRDM1 and TFAP2C as specific markers of hPGCs at 4.5 weeks of development of Carnegie stage (CS12-13), whereas KIT and SOX17 also marked the intra-aortic hematopoietic stem cell cluster in the aorta-gonad-mesonephros (AGM). WHAT IS KNOWN ALREADY: The dynamics of gene expression during germ cell development in mice is well characterized and this knowledge has proved crucial to allow the development of protocols for the in vitro derivation of functional gametes. Although there is a great interest in generating human gametes in vitro, it is still unclear which markers are expressed during the early stages of hPGC development and many studies use markers described in mouse to benchmark differentiation of human PGC-like cells (hPGCLCs). Early post-implantation development differs significantly between mice and humans, and so some germ cells markers, including SOX2, SOX17, IFITM3 and ITGA6 may not identify mPGCs and hPGCs equally well. STUDY DESIGN, SIZE, DURATION: This immunofluorescence study investigated the expression of putative hPGC markers in the caudal part of a single human embryo at 4.5 weeks of development. PARTICIPANTS/MATERIALS, SETTING, METHODS: We have investigated by immunofluorescence the expression of a set of 33 antibodies for 31 markers, including pluripotency, germ cell, adhesion, migration, surface, mesenchymal and epigenetic markers on paraffin sections of the caudal part, including the AGM region, of a single human embryo (CS12-13). The human material used was anonymously donated with informed consent from elective abortions without medical indication. MAIN RESULTS AND THE ROLE OF CHANCE: We observed germ cell specific expression of NANOG, TFAP2C and PRDM1 in POU5F1+ hPGCs in the AGM. The epigenetic markers H3K27me3 and 5mC were sufficient to distinguish hPGCs from the surrounding somatic cells. Some mPGC-markers were not detected in hPGCs, but marked other tissues; whereas other markers, such as ALPL, SOX17, KIT, TUBB3, ITGA6 marked both POU5F1+ hPGCs and other cells in the AGM. We used a combination of multiple markers, immunostaining different cellular compartments when feasible, to decrease the chance of misidentifying hPGCs. LARGE SCALE DATA: Non-applicable. LIMITATIONS REASONS FOR CAUTION: Material to study early human development is unique and very rare thus restricting the sample size. We have used a combination of antibodies limited by the number of paraffin sections available. WIDER IMPLICATIONS OF THE FINDINGS: Most of our knowledge on early gametogenesis has been obtained from model organisms such as mice and is extrapolated to humans. However, since there is a dedicated effort to produce human artificial gametes in vitro, it is of great importance to determine the expression and specificity of human-specific germ cell markers. We provide a systematic analysis of the expression of 31 different markers in paraffin sections of a CS12-13 embryo. Our results will help to set up a toolbox of markers to evaluate protocols to induce hPGCLCs in vitro. STUDY FUNDING AND COMPETING INTEREST(S): M.G.F. was funded by Fundação para a Ciência e Tecnologia (FCT) [SFRH/BD/78689/2011] and S.M.C.S.L. was funded by the Interuniversity Attraction Poles (IAP, P7/07) and the European Research Council Consolidator (ERC-CoG-725722-OVOGROWTH). The authors declare no conflict of interest.


Asunto(s)
Aorta/citología , Gametogénesis/fisiología , Células Germinativas/citología , Gónadas/citología , Mesonefro/citología , Aorta/embriología , Aorta/metabolismo , Biomarcadores/metabolismo , Adhesión Celular/fisiología , Movimiento Celular/fisiología , Células Germinativas/metabolismo , Gónadas/embriología , Gónadas/metabolismo , Humanos , Mesonefro/embriología , Mesonefro/metabolismo
3.
Hum Reprod ; 33(2): 258-269, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29237021

RESUMEN

STUDY QUESTION: What is the dynamics of expression of P-element induced wimpy testis-like (PIWIL) proteins in the germline during human fetal development and spermatogenesis? SUMMARY ANSWER: PIWIL1, PIWIL2, PIWIL3 and PIWIL4 were expressed in a sex-specific fashion in human germ cells (GC) during development and adulthood. PIWILs showed a mutually exclusive pattern of subcellular localization. PIWILs were present in the intermitochondrial cement and a single large granule in meiotic GC and their expression was different from that observed in mice, highlighting species-differences. WHAT IS KNOWN ALREADY: In mice, PIWIL proteins play prominent roles in male infertility. PIWIL mouse mutants show either post-meiotic arrest at the round spermatid stage (PIWIL1) or arrest at the zygotene-pachytene stage of meiosis I (PIWIL2 and PIWIL4) in males, while females remain fertile. Recent studies have reported a robust piRNA pool in human fetal ovary. STUDY DESIGN, SIZE, DURATION: This is a qualitative analysis of PIWILs expression in paraffin-embedded fetal human male (N = 8), female gonads (N = 6) and adult testes (N = 5), and bioinformatics analysis of online available single-cell transcriptomics data of human fetal germ cells (n = 242). PARTICIPANTS/MATERIALS, SETTING, METHODS: Human fetal gonads from elective abortion without medical indication and adult testes biopsies were donated for research with informed consent. Samples were fixed, paraffin-embedded and analyzed by immunofluorescence to study the temporal and cellular localization of PIWIL1, PIWIL2, PIWIL3 and PIWIL4. MAIN RESULTS AND THE ROLE OF CHANCE: PIWIL1, PIWIL2 and PIWIL4 showed a mutually exclusive pattern of subcellular localization, particularly in female oocytes. To our surprise, PIWIL1 immunostaining revealed the presence of a single dense paranuclear body, resembling the chromatoid body of haploid spermatocytes, in meiotic oocytes. Moreover, in contrast to mice, PIWIL4, but not PIWIL2, localized to the intermitochondrial cement. PIWIL3 was not expressed in GC during development. The upregulation of PIWIL transcripts correlated with the transcription of markers associated with piRNAs biogenesis like the TDRDs and HENMT1 in fetal GC. LARGE SCALE DATA: Non-applicable. LIMITATIONS, REASONS FOR CAUTION: This study is limited by the restricted number of samples and consequently stages analyzed. WIDER IMPLICATIONS OF THE FINDINGS: In the germline, PIWILs ensure the integrity of the human genome protecting it from 'parasitic sequences'. This study offers novel insights on the expression dynamics of PIWILs during the window of epigenetic remodeling and meiosis, and highlights important differences between humans and mice, which may prove particularly important to understand causes of infertility and improve both diagnosis and treatment in humans. STUDY FUNDING/COMPETING INTEREST(S): M.G.F. was funded by Fundação para a Ciência e Tecnologia (FCT) [SFRH/BD/78689/2011]; N.H. by China Scholarship Council (CSC) [No. 201307040026] and F.W. by Medical Personnel Training Abroad Project of Henan Province [No. 2015022] and S.M.C.d.S.L. by the Netherlands Organization of Scientific Research (NWO) [ASPASIA 015.007.037] and the Interuniversity Attraction Poles-Phase VII [IUAP/PAI P7/14]. The authors have no conflicts of interest to declare.


Asunto(s)
Proteínas Argonautas/metabolismo , Oocitos/metabolismo , Espermatogénesis/fisiología , Espermatozoides/metabolismo , Animales , Compartimento Celular , ARN Helicasas DEAD-box/metabolismo , Femenino , Desarrollo Fetal , Humanos , Masculino , Meiosis , Glicoproteínas de Membrana/metabolismo , Ratones , Folículo Ovárico/metabolismo , Embarazo , Proteínas de Unión al ARN , Espermatogonias/metabolismo
4.
BMC Dev Biol ; 15: 4, 2015 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-25605128

RESUMEN

BACKGROUND: In society, there is a clear need to improve the success rate of techniques to restore fertility. Therefore a deeper knowledge of the dynamics of the complex molecular environment that regulates human gametogenesis and (early) folliculogenesis in vivo is necessary. Here, we have studied these processes focusing on the formation of the follicular basement membrane (BM) in vivo. RESULTS: The distribution of the main components of the extracellular matrix (ECM) collagen IV, laminin and fibronectin by week 10 of gestation (W10) in the ovarian cortex revealed the existence of ovarian cords and of a distinct mesenchymal compartment, resembling the organization in the male gonads. By W17, the first primordial follicles were assembled individually in that (cortical) mesenchymal compartment and were already encapsulated by a BM of collagen IV and laminin, but not fibronectin. In adults, in the primary and secondary follicles, collagen IV, laminin and to a lesser extent fibronectin were prominent in the follicular BM. CONCLUSIONS: The ECM-molecular niche compartimentalizes the female gonads from the time of germ cell colonization until adulthood. This knowledge may contribute to improve methods to recreate the environment needed for successful folliculogenesis in vitro and that would benefit a large number of infertility patients.


Asunto(s)
Membrana Basal/fisiología , Gametogénesis , Folículo Ovárico/crecimiento & desarrollo , Membrana Basal/metabolismo , Colágeno Tipo IV/metabolismo , Femenino , Fibronectinas/metabolismo , Humanos , Masculino , Ovario/embriología , Ovario/metabolismo , Testículo/embriología , Testículo/metabolismo
5.
Travel Med Infect Dis ; 44: 102179, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34687870

RESUMEN

BACKGROUND: Dengue, Zika and Chikungunya viruses represent a serious public health problem. No evidence is available on the efficacy of repellents commercially available in Brazil. This systematic review assessed the efficacy and safety of products containing repellents commercially available in Brazil for protection against bites from Aedes aegypti and Aedes albopictus. METHODS: We performed a systematic review using the CENTRAL, MEDLINE, EMBASE, CINAHL, Web of Science, AMED, LILACS and Scopus databases. Randomized clinical trials and non-randomized clinical trials comparing topical repellent products registered with the Brazilian Health Surveillance Agency were included. Main outcomes of interest investigated were adverse effects, percentage repellency and protection time against bites. Pairs of reviewers selected the studies, extracted the data and evaluated the risk of bias. RESULTS: Sixteen studies were included. No adverse effects were reported by the studies. Against Ae. aegypti: protection time using DEET (10% and 20%-spray) was similar to IR3535 (10% and 20%-spray) and longer than citronella (5%-spray). DEET (25%-solution) had longer protection time than eucalyptus (25%-solution), while DEET (20%-lotion) had longer protection time than citronella (10%-lotion). There was no difference in protection time between herbal repellents. DEET (7% and 15%- spray) had higher percentage repellency compared to both icaridin (7%-spray) and IR3535 (20%-spray). Against Ae. albopictus: DEET (15%-spray) had a similar protection time to icaridin (20%-spray), but longer than citronella (10%-spray). CONCLUSION: DEET proved more effective than the other synthetic and natural repellents marketed in Brazil for protecting against bites from the mosquito species investigated. All repellents studied exhibited satisfactory safety profile.


Asunto(s)
Aedes , Mordeduras y Picaduras de Insectos , Repelentes de Insectos , Infección por el Virus Zika , Virus Zika , Animales , Brasil , Humanos , Mordeduras y Picaduras de Insectos/prevención & control
6.
Cardiovasc Res ; 116(3): 545-553, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31287499

RESUMEN

AIMS: Cardiovascular diseases caused by loss of functional cardiomyocytes (CMs) are a major cause of mortality and morbidity worldwide due in part to the low regenerative capacity of the adult human heart. Human pluripotent stem cell (hPSC)-derived cardiovascular progenitor cells (CPCs) are a potential cell source for cardiac repair. The aim of this study was to examine the impact of extensive remuscularization and coincident revascularization on cardiac remodelling and function in a mouse model of myocardial infarction (MI) by transplanting doxycycline (DOX)-inducible (Tet-On-MYC) hPSC-derived CPCs in vivo and inducing proliferation and cardiovascular differentiation in a drug-regulated manner. METHODS AND RESULTS: CPCs were injected firstly at a non-cardiac site in Matrigel suspension under the skin of immunocompromised mice to assess their commitment to the cardiovascular lineage and ability to self-renew or differentiate in vivo when instructed by systemically delivered factors including DOX and basic fibroblast growth factor (bFGF). CPCs in Matrigel were then injected intra-myocardially in mice subjected to MI to assess whether expandable CPCs could mediate cardiac repair. Transplanted CPCs expanded robustly both subcutis and in the myocardium using the same DOX/growth factor inducing regime. Upon withdrawal of these cell-renewal factors, CPCs differentiated with high efficiency at both sites into the major cardiac lineages including CMs, endothelial cells, and smooth muscle cells. After MI, engraftment of CPCs in the heart significantly reduced fibrosis in the infarcted area and prevented left ventricular remodelling, although cardiac function determined by magnetic resonance imaging was unaltered. CONCLUSION: Replacement of large areas of muscle may be required to regenerate the heart of patients following MI. Our human/mouse model demonstrated that proliferating hPSC-CPCs could reduce infarct size and fibrosis resulting in formation of large grafts. Importantly, the results suggested that expanding transplanted cells in situ at the progenitor stage maybe be an effective alternative causing less tissue damage than injection of very large numbers of CMs.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Células Madre Embrionarias Humanas/trasplante , Infarto del Miocardio/cirugía , Miocardio/patología , Miocitos Cardíacos/trasplante , Células Madre Pluripotentes/trasplante , Regeneración , Función Ventricular Izquierda , Animales , Linaje de la Célula , Células Cultivadas , Modelos Animales de Enfermedad , Fibrosis , Células Madre Embrionarias Humanas/metabolismo , Humanos , Masculino , Ratones Endogámicos NOD , Ratones SCID , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Células Madre Pluripotentes/metabolismo , Recuperación de la Función , Remodelación Ventricular
7.
Stem Cell Reports ; 11(6): 1493-1505, 2018 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-30503260

RESUMEN

Predicting developmental potency and risk of posttransplantation tumor formation by human pluripotent stem cells (hPSCs) and their derivatives largely rely on classical histological analysis of teratomas. Here, we investigated whether an assay based on microRNAs (miRNA) in blood plasma is able to detect potentially malignant elements. Several hPSCs and human malignant germ cell tumor (hGCT) lines were investigated in vitro and in vivo after mouse xenografting. The multiple conventional hPSC lines generated mature teratomas, while xenografts from induced hPSCs (hiPSCs) with reactivated reprogramming transgenes and hGCT lines contained undifferentiated and potentially malignant components. The presence of these elements was reflected in the mRNA and miRNA profiles of the xenografts with OCT3/4 mRNA and the miR-371 and miR-302 families readily detectable. miR-371 family members were also identified in mouse plasma faithfully reporting undifferentiated elements in the xenografts. This study demonstrated that undifferentiated and potentially malignant cells could be detected in vivo.


Asunto(s)
Bioensayo/métodos , Biomarcadores de Tumor/sangre , Diferenciación Celular/genética , MicroARNs/sangre , Células Madre Pluripotentes/metabolismo , Teratoma/sangre , Teratoma/genética , Animales , Biomarcadores de Tumor/genética , Línea Celular , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , MicroARNs/genética , Neoplasias de Células Germinales y Embrionarias/genética , Neoplasias de Células Germinales y Embrionarias/patología , Análisis de Componente Principal , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Tiempo , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Nat Commun ; 8(1): 908, 2017 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-29030611

RESUMEN

Determining cell identity and maturation status of differentiated pluripotent stem cells (PSCs) requires knowledge of the transcriptional and epigenetic trajectory of organs during development. Here, we generate a transcriptional and DNA methylation atlas covering 21 organs during human fetal development. Analysis of multiple isogenic organ sets shows that organ-specific DNA methylation patterns are highly dynamic between week 9 (W9) and W22 of gestation. We investigate the impact of reprogramming on organ-specific DNA methylation by generating human induced pluripotent stem cell (hiPSC) lines from six isogenic organs. All isogenic hiPSCs acquire DNA methylation patterns comparable to existing hPSCs. However, hiPSCs derived from fetal brain retain brain-specific DNA methylation marks that seem sufficient to confer higher propensity to differentiate to neural derivatives. This systematic analysis of human fetal organs during development and associated isogenic hiPSC lines provides insights in the role of DNA methylation in lineage commitment and epigenetic reprogramming in humans.While DNA methylation and gene expression data are widely available for animal models, comprehensive data from human development is rarer. Here, the authors generated transcriptional and DNA methylation data from 21 organs during human development and 6 isogenic induced pluripotent stem cell lines.


Asunto(s)
Reprogramación Celular/genética , Metilación de ADN , Células Madre Pluripotentes/metabolismo , Activación Transcripcional , Animales , Células Cultivadas , Embrión de Mamíferos/citología , Embrión de Mamíferos/embriología , Embrión de Mamíferos/metabolismo , Epigénesis Genética , Desarrollo Fetal/genética , Fibroblastos/metabolismo , Perfilación de la Expresión Génica/métodos , Ontología de Genes , Genómica/métodos , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Ratones
9.
Biol Open ; 5(2): 185-94, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26834021

RESUMEN

Human germ cells originate in an extragonadal location and have to migrate to colonize the gonadal primordia at around seven weeks of gestation (W7, or five weeks post conception). Many germ cells are lost along the way and should enter apoptosis, but some escape and can give rise to extragonadal germ cell tumors. Due to the common somatic origin of gonads and adrenal cortex, we investigated whether ectopic germ cells were present in the human adrenals. Germ cells expressing DDX4 and/or POU5F1 were present in male and female human adrenals in the first and second trimester. However, in contrast to what has been described in mice, where 'adrenal' and 'ovarian' germ cells seem to enter meiosis in synchrony, we were unable to observe meiotic entry in human 'adrenal' germ cells until W22. By contrast, 'ovarian' germ cells at W22 showed a pronounced asynchronous meiotic entry. Interestingly, we observed that immature POU5F1+ germ cells in both first and second trimester ovaries still expressed the neural crest marker TUBB3, reminiscent of their migratory phase. Our findings highlight species-specific differences in early gametogenesis between mice and humans. We report the presence of a population of ectopic germ cells in the human adrenals during development.

10.
Stem Cell Reports ; 6(1): 85-94, 2016 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-26711875

RESUMEN

Naive mouse embryonic stem cells (mESCs) are in a metastable state and fluctuate between inner cell mass- and epiblast-like phenotypes. Here, we show transient activation of the BMP-SMAD signaling pathway in mESCs containing a BMP-SMAD responsive reporter transgene. Activation of the BMP-SMAD reporter transgene in naive mESCs correlated with lower levels of genomic DNA methylation, high expression of 5-methylcytosine hydroxylases Tet1/2 and low levels of DNA methyltransferases Dnmt3a/b. Moreover, naive mESCs, in which the BMP-SMAD reporter transgene was activated, showed higher resistance to differentiation. Using double Smad1;Smad5 knockout mESCs, we showed that BMP-SMAD signaling is dispensable for self-renewal in both naive and ground state. These mutant mESCs were still pluripotent, but they exhibited higher levels of DNA methylation than their wild-type counterparts and had a higher propensity to differentiate. We showed that BMP-SMAD signaling modulates lineage priming in mESCs, by transiently regulating the enzymatic machinery responsible for DNA methylation.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Linaje de la Célula/fisiología , Autorrenovación de las Células/fisiología , Células Madre Embrionarias de Ratones/metabolismo , Transducción de Señal/fisiología , Proteínas Smad Reguladas por Receptores/metabolismo , Animales , Proteínas Morfogenéticas Óseas/genética , Linaje de la Célula/genética , Autorrenovación de las Células/genética , Células Cultivadas , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Dioxigenasas , Perfilación de la Expresión Génica/métodos , Ratones , Ratones Noqueados , Ratones Transgénicos , Microscopía Confocal , Células Madre Embrionarias de Ratones/citología , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/genética , Proteínas Smad Reguladas por Receptores/genética , Proteína Smad1/genética , Proteína Smad1/metabolismo , Proteína Smad5/genética , Proteína Smad5/metabolismo
11.
PLoS One ; 11(4): e0154108, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27100087

RESUMEN

The supernumerary chromosome 21 in Down syndrome differentially affects the methylation statuses at CpG dinucleotide sites and creates genome-wide transcriptional dysregulation of parental alleles, ultimately causing diverse pathologies. At present, it is unknown whether those effects are dependent or independent of the parental origin of the nondisjoined chromosome 21. Linkage analysis is a standard method for the determination of the parental origin of this aneuploidy, although it is inadequate in cases with deficiency of samples from the progenitors. Here, we assessed the reliability of the epigenetic 5mCpG imprints resulting in the maternally (oocyte)-derived allele methylation at a differentially methylated region (DMR) of the candidate imprinted WRB gene for asserting the parental origin of chromosome 21. We developed a methylation-sensitive restriction enzyme-specific PCR assay, based on the WRB DMR, across single nucleotide polymorphisms (SNPs) to examine the methylation statuses in the parental alleles. In genomic DNA from blood cells of either disomic or trisomic subjects, the maternal alleles were consistently methylated, while the paternal alleles were unmethylated. However, the supernumerary chromosome 21 did alter the methylation patterns at the RUNX1 (chromosome 21) and TMEM131 (chromosome 2) CpG sites in a parent-of-origin-independent manner. To evaluate the 5mCpG imprints, we conducted a computational comparative epigenomic analysis of transcriptome RNA sequencing (RNA-Seq) and histone modification expression patterns. We found allele fractions consistent with the transcriptional biallelic expression of WRB and ten neighboring genes, despite the similarities in the confluence of both a 17-histone modification activation backbone module and a 5-histone modification repressive module between the WRB DMR and the DMRs of six imprinted genes. We concluded that the maternally inherited 5mCpG imprints at the WRB DMR are uncoupled from the parental allele expression of WRB and ten neighboring genes in several tissues and that trisomy 21 alters DNA methylation in parent-of-origin-dependent and -independent manners.


Asunto(s)
Islas de CpG/genética , Metilación de ADN , Síndrome de Down/genética , Impresión Genómica , Alelos , Línea Celular , ADN/genética , Epigenómica/métodos , Femenino , Histonas/metabolismo , Humanos , Oocitos/metabolismo , Padres , Reacción en Cadena de la Polimerasa/métodos , Polimorfismo de Nucleótido Simple
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA