Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Crit Rev Food Sci Nutr ; 62(8): 1999-2049, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33399015

RESUMEN

Carotenoids are isoprenoids widely distributed in foods that have been always part of the diet of humans. Unlike the other so-called food bioactives, some carotenoids can be converted into retinoids exhibiting vitamin A activity, which is essential for humans. Furthermore, they are much more versatile as they are relevant in foods not only as sources of vitamin A, but also as natural pigments, antioxidants, and health-promoting compounds. Lately, they are also attracting interest in the context of nutricosmetics, as they have been shown to provide cosmetic benefits when ingested in appropriate amounts. In this work, resulting from the collaborative work of participants of the COST Action European network to advance carotenoid research and applications in agro-food and health (EUROCAROTEN, www.eurocaroten.eu, https://www.cost.eu/actions/CA15136/#tabs|Name:overview) research on carotenoids in foods and feeds is thoroughly reviewed covering aspects such as analysis, carotenoid food sources, carotenoid databases, effect of processing and storage conditions, new trends in carotenoid extraction, daily intakes, use as human, and feed additives are addressed. Furthermore, classical and recent patents regarding the obtaining and formulation of carotenoids for several purposes are pinpointed and briefly discussed. Lastly, emerging research lines as well as research needs are highlighted.


Asunto(s)
Carotenoides , Alimentos , Antioxidantes , Carotenoides/análisis , Dieta , Humanos , Vitamina A
2.
Antioxidants (Basel) ; 10(8)2021 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-34439412

RESUMEN

The beneficial health effects of Chlorella vulgaris have been associated with the presence of several nutrients and antioxidants, including carotenoids. However, the in vivo bioavailability of Chlorella is still poorly evaluated. In this work, a human intervention study was conducted in 11 healthy men to evaluate the bioavailability of carotenoids within 3 days after the intake of a single dose (6 g) of dried marine Chlorella vulgaris containing lutein (7.08 mg), ß-carotene (1.88 mg) and zeaxanthin (1.47 mg). Subjects were instructed to follow a low carotenoid diet during the experimental phase, starting 1 week earlier. On the day of the experiment, dried microalgae formulated in vegetarian hard capsules were ingested, and blood samples were collected up to 72 h for the analysis of plasma carotenoids concentration by high-performance liquid chromatography with diode-array detection. For all carotenoids, the estimated AUC and Cmax values were significantly different from zero (p < 0.05), indicating that a single dose of marine Chlorella vulgaris increased plasma concentrations of lutein (Cmin-corrected AUC = 1002 µg·h/L, Cmax = 20.4 µg/L), ß-carotene (AUC = 1302 µg·h/L, Cmax = 34.9 µg/L) and zeaxanthin (AUC = 122.2 µg·h/L, Cmax = 3.4 µg/L). The bioavailability of other compounds, namely, polyunsaturated fatty acids and trace elements, was also assessed post-prandial for the first time, showing that linoleic acid, docosahexaenoic acid and iodine were absorbed after microalgae intake. These findings support the use of Chlorella vulgaris as a source of carotenoids, PUFA and essential trace elements with associated health benefits.

3.
Int J Pharm ; 515(1-2): 1-10, 2016 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-27702697

RESUMEN

During the development of intranasal drug delivery systems for local/systemic effect or brain targeting, it is necessary to assess its cytotoxicity and drug transport through nasal epithelium. In order to avoid animal experiments or the use of excised tissues, in vitro cell models, such as RPMI 2650 cells, are being preferred during recent years. Nevertheless, the deposition of solid formulations into nasal cell layers with further transepithelial transport rate of drugs has been poorly studied or reported. Thus, the purpose of this work is to further investigate RPMI 2650 cell line as an effective alternative to animal tissues for solid drug-loaded formulations cytotoxicity and drug permeation studies in order to become an option as a tool for drug discovery. Furthermore, we wanted to determine the extent to which the administration of drugs in particulate forms would differ in relation to the permeability of the same compounds applied as solutions. RPMI 2650 cells were cultured in submersed or at air-liquid interface conditions and characterized regarding transepithelial electrical resistance (TEER) and production of mucus. Pure ketoprofen (used as model compound) and five formulations loaded with same drug, namely solid lipid particles (Gelucire 43/01™), structured lipid particles (Gelucire 43/01™:Glyceryl monooleate) and aerogel microparticles (Alginate, Alginate:Pectin, Alginate:Carrageenan), were evaluated with RPMI 2650 model in terms of cytotoxicity and permeability of drug (applied as solution, dispersion or powder+buffer). RPMI 2650 cells were capable to grow in monolayer and multilayer, showing the same permeability as excised human nasal mucosa for sodium fluorescein (paracellular marker), with analogous TEER values and production of mucus, as referred by other authors. None of the powders showed cytotoxicity when applied to RPMI 2650 cells. Regarding permeation of drug through cell layers, not only the form of application of powders but also their physical and chemical properties affected the final permeation of active pharmaceutical ingredient. Aerogel microparticles administered directly to the cell layer (powder+buffer) exhibited the highest permeation-enhancing effect compared to the pure drug, which can be attributed to the mucoadhesive properties of the materials composing the carriers, proving to be an attractive formulation for nasal drug delivery. According to these results, RPMI 2650 showed to be a promising alternative to ex vivo or in vivo nasal models for cytotoxicity and evaluation of drug permeability of nasal drug-loaded formulations.


Asunto(s)
Mucosa Nasal/metabolismo , Preparaciones Farmacéuticas/administración & dosificación , Administración Intranasal/métodos , Alginatos/química , Línea Celular , Química Farmacéutica/métodos , Sistemas de Liberación de Medicamentos/métodos , Fluoresceína/química , Ácido Glucurónico/química , Glicéridos/química , Ácidos Hexurónicos/química , Humanos , Modelos Biológicos , Permeabilidad , Preparaciones Farmacéuticas/química , Polvos/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA