Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Cell ; 178(6): 1375-1386.e11, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31474366

RESUMEN

In search of the molecular identities of cold-sensing receptors, we carried out an unbiased genetic screen for cold-sensing mutants in C. elegans and isolated a mutant allele of glr-3 gene that encodes a kainate-type glutamate receptor. While glutamate receptors are best known to transmit chemical synaptic signals in the CNS, we show that GLR-3 senses cold in the peripheral sensory neuron ASER to trigger cold-avoidance behavior. GLR-3 transmits cold signals via G protein signaling independently of its glutamate-gated channel function, suggesting GLR-3 as a metabotropic cold receptor. The vertebrate GLR-3 homolog GluK2 from zebrafish, mouse, and human can all function as a cold receptor in heterologous systems. Mouse DRG sensory neurons express GluK2, and GluK2 knockdown in these neurons suppresses their sensitivity to cold but not cool temperatures. Our study identifies an evolutionarily conserved cold receptor, revealing that a central chemical receptor unexpectedly functions as a thermal receptor in the periphery.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/genética , Receptores de Glutamato/fisiología , Receptores de Ácido Kaínico/fisiología , Receptores de Glutamato Metabotrópico/fisiología , Sensación Térmica/fisiología , Animales , Células CHO , Proteínas de Caenorhabditis elegans/genética , Frío , Cricetulus , Humanos , Ratones , Neuronas/metabolismo , Receptores de Glutamato/genética , Receptores de Ácido Kaínico/genética , Receptores de Glutamato Metabotrópico/genética , Sensación Térmica/genética
2.
Cell ; 167(5): 1252-1263.e10, 2016 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-27863243

RESUMEN

Many animal tissues/cells are photosensitive, yet only two types of photoreceptors (i.e., opsins and cryptochromes) have been discovered in metazoans. The question arises as to whether unknown types of photoreceptors exist in the animal kingdom. LITE-1, a seven-transmembrane gustatory receptor (GR) homolog, mediates UV-light-induced avoidance behavior in C. elegans. However, it is not known whether LITE-1 functions as a chemoreceptor or photoreceptor. Here, we show that LITE-1 directly absorbs both UVA and UVB light with an extinction coefficient 10-100 times that of opsins and cryptochromes, indicating that LITE-1 is highly efficient in capturing photons. Unlike typical photoreceptors employing a prosthetic chromophore to capture photons, LITE-1 strictly depends on its protein conformation for photon absorption. We have further identified two tryptophan residues critical for LITE-1 function. Interestingly, unlike GPCRs, LITE-1 adopts a reversed membrane topology. Thus, LITE-1, a taste receptor homolog, represents a distinct type of photoreceptor in the animal kingdom.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de la Membrana/metabolismo , Animales , Caenorhabditis elegans/efectos de la radiación , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/aislamiento & purificación , Proteínas de la Membrana/química , Proteínas de la Membrana/aislamiento & purificación , Fotones , Conformación Proteica , Triptófano/metabolismo , Rayos Ultravioleta
3.
Nature ; 633(8031): 960-967, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39169184

RESUMEN

Inorganic phosphate (Pi) is a fundamental macronutrient for all living organisms, the homeostasis of which is critical for numerous biological activities1-3. As the only known human Pi exporter to date, XPR1 has an indispensable role in cellular Pi homeostasis4,5. Dysfunction of XPR1 is associated with neurodegenerative disease6-8. However, the mechanisms underpinning XPR1-mediated Pi efflux and regulation by the intracellular inositol polyphosphate (InsPP) sensor SPX domain remain poorly understood. Here we present cryo-electron microscopy structures of human XPR1 in Pi-bound closed, open and InsP6-bound forms, revealing the structural basis for XPR1 gating and regulation by InsPPs. XPR1 consists of an N-terminal SPX domain, a dimer-formation core domain and a Pi transport domain. Within the transport domain, three basic clusters are responsible for Pi binding and transport, and a conserved W573 acts as a molecular switch for gating. In addition, the SPX domain binds to InsP6 and facilitates Pi efflux by liberating the C-terminal loop that limits Pi entry. This study provides a conceptual framework for the mechanistic understanding of Pi homeostasis by XPR1 homologues in fungi, plants and animals.


Asunto(s)
Transporte Biológico , Microscopía por Crioelectrón , Fosfatos , Ácido Fítico , Receptor de Retrovirus Xenotrópico y Politrópico , Humanos , Sitios de Unión , Homeostasis , Modelos Moleculares , Fosfatos/metabolismo , Fosfatos/química , Ácido Fítico/metabolismo , Ácido Fítico/química , Unión Proteica , Dominios Proteicos , Receptor de Retrovirus Xenotrópico y Politrópico/química , Receptor de Retrovirus Xenotrópico y Politrópico/metabolismo , Receptor de Retrovirus Xenotrópico y Politrópico/ultraestructura
4.
Cell ; 152(4): 806-17, 2013 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-23415228

RESUMEN

Both poikilotherms and homeotherms live longer at lower body temperatures, highlighting a general role of temperature reduction in lifespan extension. However, the underlying mechanisms remain unclear. One prominent model is that cold temperatures reduce the rate of chemical reactions, thereby slowing the rate of aging. This view suggests that cold-dependent lifespan extension is simply a passive thermodynamic process. Here, we challenge this view in C. elegans by showing that genetic programs actively promote longevity at cold temperatures. We find that TRPA-1, a cold-sensitive TRP channel, detects temperature drop in the environment to extend lifespan. This effect requires cold-induced, TRPA-1-mediated calcium influx and a calcium-sensitive PKC that signals to the transcription factor DAF-16/FOXO. Human TRPA1 can functionally substitute for worm TRPA-1 in promoting longevity. Our results reveal a previously unrecognized function for TRP channels, link calcium signaling to longevity, and, importantly, demonstrate that genetic programs contribute to lifespan extension at cold temperatures.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Canales de Calcio/metabolismo , Longevidad , Proteínas del Tejido Nervioso/metabolismo , Sensación Térmica , Canales de Potencial de Receptor Transitorio/metabolismo , Envejecimiento , Animales , Animales Modificados Genéticamente , Canales de Calcio/genética , Señalización del Calcio , Frío , Factores de Transcripción Forkhead , Humanos , Mucosa Intestinal/metabolismo , Proteínas del Tejido Nervioso/genética , Proteína Quinasa C/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Canal Catiónico TRPA1 , Factores de Transcripción/metabolismo , Canales de Potencial de Receptor Transitorio/genética
5.
PLoS Biol ; 22(7): e3002728, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39028754

RESUMEN

Metabolic dysfunction-associated steatohepatitis (MASH) is the progressive form of liver steatosis, the most common liver disease, and substantially increases the mortality rate. However, limited therapies are currently available to prevent MASH development. Identifying potential pharmacological treatments for the condition has been hampered by its heterogeneous and complex nature. Here, we identified a hepatic nonneuronal cholinergic signaling pathway required for metabolic adaptation to caloric overload. We found that cholinergic receptor nicotinic alpha 2 subunit (CHRNA2) is highly expressed in hepatocytes of mice and humans. Further, CHRNA2 is activated by a subpopulation of local acetylcholine-producing macrophages during MASH development. The activation of CHRNA2 coordinates defensive programs against a broad spectrum of MASH-related pathogenesis, including steatosis, inflammation, and fibrosis. Hepatocyte-specific loss of CHRNA2 signaling accelerates the disease onset in different MASH mouse models. Activation of this pathway via pharmacological inhibition of acetylcholine degradation protects against MASH development. Our study uncovers a hepatic nicotinic cholinergic receptor pathway that constitutes a cell-autonomous self-defense route against prolonged metabolic stress and holds therapeutic potential for combatting human MASH.


Asunto(s)
Hígado Graso , Hepatocitos , Hígado , Receptores Nicotínicos , Transducción de Señal , Animales , Receptores Nicotínicos/metabolismo , Receptores Nicotínicos/genética , Humanos , Hígado/metabolismo , Hígado/patología , Ratones , Hígado Graso/metabolismo , Hepatocitos/metabolismo , Ratones Endogámicos C57BL , Masculino , Macrófagos/metabolismo , Acetilcolina/metabolismo , Ratones Noqueados , Modelos Animales de Enfermedad
7.
Mol Cell ; 75(3): 644-660.e5, 2019 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-31398325

RESUMEN

Cell-cell communication via ligand-receptor signaling is a fundamental feature of complex organs. Despite this, the global landscape of intercellular signaling in mammalian liver has not been elucidated. Here we perform single-cell RNA sequencing on non-parenchymal cells isolated from healthy and NASH mouse livers. Secretome gene analysis revealed a highly connected network of intrahepatic signaling and disruption of vascular signaling in NASH. We uncovered the emergence of NASH-associated macrophages (NAMs), which are marked by high expression of triggering receptors expressed on myeloid cells 2 (Trem2), as a feature of mouse and human NASH that is linked to disease severity and highly responsive to pharmacological and dietary interventions. Finally, hepatic stellate cells (HSCs) serve as a hub of intrahepatic signaling via HSC-derived stellakines and their responsiveness to vasoactive hormones. These results provide unprecedented insights into the landscape of intercellular crosstalk and reprogramming of liver cells in health and disease.


Asunto(s)
Comunicación Celular/genética , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/genética , Análisis de Secuencia de ARN , Animales , Reprogramación Celular/genética , Modelos Animales de Enfermedad , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , Humanos , Ligandos , Hígado/patología , Macrófagos/metabolismo , Macrófagos/patología , Ratones , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Transducción de Señal/genética , Análisis de la Célula Individual
8.
Genes Dev ; 32(3-4): 258-270, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29491136

RESUMEN

Tissue-tissue communications are integral to organismal aging, orchestrating a body-wide aging process. The brain plays a key role in this process by detecting and processing signals from the environment and then communicating them to distal tissues such as the gut to regulate longevity. How this is achieved, however, is poorly understood. Here, using Caenorhabditis elegans as a model, we identified two distinct neuroendocrine signaling circuits by which the worm nervous system senses cool and warm environmental temperatures through cool- and warm-sensitive neurons and then signals the gut to extend and shorten life span, respectively. The prolongevity "cool" circuit uses the small neurotransmitters glutamate and serotonin, whereas the anti-longevity "warm" circuit is mediated by insulin-like neuropeptides. Both types of neuroendocrine signals converge on the gut through their cognate receptors to differentially regulate the transcription factor DAF-16/FOXO, leading to opposing outcomes in longevity. Our study illustrates how the brain detects and processes environmental signals to bidirectionally regulate longevity by signaling the gut.


Asunto(s)
Encéfalo/fisiología , Mucosa Intestinal/metabolismo , Longevidad/fisiología , Neuronas/fisiología , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Factores de Transcripción Forkhead/metabolismo , Ácido Glutámico/metabolismo , Neuropéptidos/metabolismo , Receptor de Insulina/metabolismo , Receptores de Glutamato/fisiología , Receptores de Serotonina/metabolismo , Serotonina/metabolismo , Transducción de Señal , Transmisión Sináptica , Temperatura
9.
Mol Cell ; 66(3): 332-344.e4, 2017 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-28475869

RESUMEN

Skeletal muscle is a major site of postprandial glucose disposal. Inadequate insulin action in skeletal myocytes contributes to hyperglycemia in diabetes. Although glucose is known to stimulate insulin secretion by ß cells, whether it directly engages nutrient signaling pathways in skeletal muscle to maintain systemic glucose homeostasis remains largely unexplored. Here we identified the Baf60c-Deptor-AKT pathway as a target of muscle glucose sensing that augments insulin action in skeletal myocytes. Genetic activation of this pathway improved postprandial glucose disposal in mice, whereas its muscle-specific ablation impaired insulin action and led to postprandial glucose intolerance. Mechanistically, glucose triggers KATP channel-dependent calcium signaling, which promotes HDAC5 phosphorylation and nuclear exclusion, leading to Baf60c induction and insulin-independent AKT activation. This pathway is engaged by the anti-diabetic sulfonylurea drugs to exert their full glucose-lowering effects. These findings uncover an unexpected mechanism of glucose sensing in skeletal myocytes that contributes to homeostasis and therapeutic action.


Asunto(s)
Glucemia/metabolismo , Metabolismo Energético , Fibras Musculares Esqueléticas/metabolismo , Transducción de Señal , Animales , Glucemia/efectos de los fármacos , Línea Celular , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Metabolismo Energético/efectos de los fármacos , Activación Enzimática , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Homeostasis , Humanos , Hipoglucemiantes/farmacología , Insulina/sangre , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Canales KATP/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fibras Musculares Esqueléticas/efectos de los fármacos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Periodo Posprandial , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Compuestos de Sulfonilurea/farmacología , Factores de Tiempo , Técnicas de Cultivo de Tejidos
10.
PLoS Genet ; 16(12): e1009257, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33301443

RESUMEN

The eyeless C. elegans exhibits robust phototaxis behavior in response to short-wavelength light, particularly UV light. C. elegans senses light through LITE-1, a unique photoreceptor protein that belongs to the invertebrate taste receptor family. However, it remains unclear how LITE-1 is regulated. Here, we performed a forward genetic screen for genes that when mutated suppress LITE-1 function. One group of lite-1 suppressors are the genes required for producing the two primary antioxidants thioredoxin and glutathione, suggesting that oxidization of LITE-1 inhibits its function. Indeed, the oxidant hydrogen peroxide (H2O2) suppresses phototaxis behavior and inhibits the photoresponse in photoreceptor neurons, whereas other sensory behaviors are relatively less vulnerable to H2O2. Conversely, antioxidants can rescue the phenotype of lite-1 suppressor mutants and promote the photoresponse. As UV light illumination generates H2O2, we propose that upon light activation of LITE-1, light-produced H2O2 then deactivates LITE-1 to terminate the photoresponse, while antioxidants may promote LITE-1's recovery from its inactive state. Our studies provide a potential mechanism by which H2O2 and antioxidants act synergistically to regulate photosensation in C. elegans.


Asunto(s)
Antioxidantes/farmacología , Proteínas de Caenorhabditis elegans/metabolismo , Peróxido de Hidrógeno/farmacología , Proteínas de la Membrana/metabolismo , Células Fotorreceptoras/metabolismo , Animales , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de la Membrana/genética , Mutación , Células Fotorreceptoras/efectos de los fármacos , Fototaxis , Supresión Genética
11.
FASEB J ; 34(11): 14863-14877, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32918517

RESUMEN

Appropriate control of hepatic gluconeogenesis is essential for the organismal survival upon prolonged fasting and maintaining systemic homeostasis under metabolic stress. Here, we show protein arginine methyltransferase 1 (PRMT1), a key enzyme that catalyzes the protein arginine methylation process, particularly the isoform encoded by Prmt1 variant 2 (PRMT1V2), is critical in regulating gluconeogenesis in the liver. Liver-specific deletion of Prmt1 reduced gluconeogenic capacity in cultured hepatocytes and in the liver. Prmt1v2 was expressed at a higher level compared to Prmt1v1 in hepatic tissue and cells. Gain-of-function of PRMT1V2 clearly activated the gluconeogenic program in hepatocytes via interactions with PGC1α, a key transcriptional coactivator regulating gluconeogenesis, enhancing its activity via arginine methylation, while no effects of PRMT1V1 were observed. Similar stimulatory effects of PRMT1V2 in controlling gluconeogenesis were observed in human HepG2 cells. PRMT1, specifically PRMT1V2, was stabilized in fasted liver and hepatocytes treated with glucagon, in a PGC1α-dependent manner. PRMT1, particularly Prmt1v2, was significantly induced in the liver of streptozocin-induced type 1 diabetes and high fat diet-induced type 2 diabetes mouse models and liver-specific Prmt1 deficiency drastically ameliorated diabetic hyperglycemia. These findings reveal that PRMT1 modulates gluconeogenesis and mediates glucose homeostasis under physiological and pathological conditions, suggesting that deeper understanding how PRMT1 contributes to the coordinated efforts in glycemic control may ultimately present novel therapeutic strategies that counteracts hyperglycemia in disease settings.


Asunto(s)
Gluconeogénesis , Hepatocitos/metabolismo , Hiperglucemia/genética , Proteína-Arginina N-Metiltransferasas/metabolismo , Animales , Células Cultivadas , Mutación con Ganancia de Función , Glucagón/metabolismo , Glucosa/metabolismo , Células Hep G2 , Humanos , Hiperglucemia/metabolismo , Ratones , Ratones Endogámicos C57BL , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteína-Arginina N-Metiltransferasas/genética
12.
Toxins (Basel) ; 16(3)2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38535811

RESUMEN

Microcystin-LR (MC-LR) is a secondary metabolite produced by cyanobacteria, globally renowned for its potent hepatotoxicity. However, an increasing body of research suggests that it also exhibits pronounced neurotoxicity. PP2A is a fundamental intracellular phosphatase that plays a pivotal role in cell development and survival. Although extensive research has focused on the binding of MC-LR to the C subunit of PP2A, few studies have explored the key amino acid sites that can prevent the binding of MC-LR to PP2A-C. Due to the advantages of Caenorhabditis elegans (C. elegans), such as ease of genetic editing and a short lifespan, we exposed nematodes to MC-LR in a manner that simulated natural exposure conditions based on MC-LR concentrations in natural water bodies (immersion exposure). Our findings demonstrate that MC-LR exerts comprehensive toxicity on nematodes, including reducing lifespan, impairing reproductive capabilities, and diminishing sensory functions. Notably, and for the first time, we observed that MC-LR neurotoxic effects can persist up to the F3 generation, highlighting the significant threat that MC-LR poses to biological populations in natural environments. Furthermore, we identified two amino acid sites (L252 and C278) in PP2A-C through mutations that prevented MC-LR binding without affecting PP2A activity. This discovery was robustly validated through behavioral studies and neuronal calcium imaging using nematodes. In conclusion, we identified two crucial amino acid sites that could prevent MC-LR from binding to PP2A-C, which holds great significance for the future development of MC-LR detoxification drugs.


Asunto(s)
Caenorhabditis elegans , Toxinas Marinas , Microcistinas , Síndromes de Neurotoxicidad , Animales , Mutación , Aminoácidos , Neuronas
13.
Nat Commun ; 15(1): 3691, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693179

RESUMEN

Voltage-gated sodium (NaV) channels mediate a plethora of electrical activities. NaV channels govern cellular excitability in response to depolarizing stimuli. Inactivation is an intrinsic property of NaV channels that regulates cellular excitability by controlling the channel availability. The fast inactivation, mediated by the Ile-Phe-Met (IFM) motif and the N-terminal helix (N-helix), has been well-characterized. However, the molecular mechanism underlying NaV channel slow inactivation remains elusive. Here, we demonstrate that the removal of the N-helix of NaVEh (NaVEhΔN) results in a slow-inactivated channel, and present cryo-EM structure of NaVEhΔN in a potential slow-inactivated state. The structure features a closed activation gate and a dilated selectivity filter (SF), indicating that the upper SF and the inner gate could serve as a gate for slow inactivation. In comparison to the NaVEh structure, NaVEhΔN undergoes marked conformational shifts on the intracellular side. Together, our results provide important mechanistic insights into NaV channel slow inactivation.


Asunto(s)
Microscopía por Crioelectrón , Activación del Canal Iónico , Canales de Sodio Activados por Voltaje , Canales de Sodio Activados por Voltaje/metabolismo , Canales de Sodio Activados por Voltaje/química , Humanos , Animales , Células HEK293 , Modelos Moleculares
14.
Nat Struct Mol Biol ; 31(7): 1095-1104, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38664565

RESUMEN

RNA uptake by cells is critical for RNA-mediated gene interference (RNAi) and RNA-based therapeutics. In Caenorhabditis elegans, RNAi is systemic as a result of SID-1-mediated double-stranded RNA (dsRNA) across cells. Despite the functional importance, the underlying mechanisms of dsRNA internalization by SID-1 remain elusive. Here we describe cryogenic electron microscopy structures of SID-1, SID-1-dsRNA complex and human SID-1 homologs SIDT1 and SIDT2, elucidating the structural basis of dsRNA recognition and import by SID-1. The homodimeric SID-1 homologs share conserved architecture, but only SID-1 possesses the molecular determinants within its extracellular domains for distinguishing dsRNA from single-stranded RNA and DNA. We show that the removal of the long intracellular loop between transmembrane helix 1 and 2 attenuates dsRNA uptake and systemic RNAi in vivo, suggesting a possible endocytic mechanism of SID-1-mediated dsRNA internalization. Our study provides mechanistic insights into dsRNA internalization by SID-1, which may facilitate the development of dsRNA applications based on SID-1.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Microscopía por Crioelectrón , ARN Bicatenario , ARN Bicatenario/metabolismo , ARN Bicatenario/química , Animales , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Humanos , Modelos Moleculares , Interferencia de ARN , Proteínas de la Membrana
15.
Front Cell Dev Biol ; 11: 1185989, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37250891

RESUMEN

Micronutrients and cell death have a strong relationship and both are essential for human to maintain good body health. Dysregulation of any micronutrients causes metabolic or chronic diseases, including obesity, cardiometabolic condition, neurodegeneration, and cancer. The nematode Caenorhabditis elegans is an ideal genetic organism for researching the mechanisms of micronutrients in metabolism, healthspan, and lifespan. For example, C. elegans is a haem auxotroph, and the research of this special haem trafficking pathway contributes important reference to mammal study. Also, C. elegans characteristics including anatomy simply, clear cell lineage, well-defined genetics, and easily differentiated cell forms make it a powerful tool for studying the mechanisms of cell death including apoptosis, necrosis, autophagy, and ferroptosis. Here, we describe the understanding of micronutrient metabolism currently and also sort out the fundamental mechanisms of different kinds of cell death. A thorough understanding of these physiological processes not only builds a foundation for developing better treatments for various micronutrient disorders but also provides key insights into human health and aging.

16.
Cell Rep ; 42(8): 112858, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37494189

RESUMEN

The sodium-activated Slo2.2 channel is abundantly expressed in the brain, playing a critical role in regulating neuronal excitability. The Na+-binding site and the underlying mechanisms of Na+-dependent activation remain unclear. Here, we present cryoelectron microscopy (cryo-EM) structures of human Slo2.2 in closed, open, and inhibitor-bound form at resolutions of 2.6-3.2 Å, revealing gating mechanisms of Slo2.2 regulation by cations and a potent inhibitor. The cytoplasmic gating ring domain of the closed Slo2.2 harbors multiple K+ and Zn2+ sites, which stabilize the channel in the closed conformation. The open Slo2.2 structure reveals at least two Na+-sensitive sites where Na+ binding induces expansion and rotation of the gating ring that opens the inner gate. Furthermore, a potent inhibitor wedges into a pocket formed by pore helix and S6 helix and blocks the pore. Together, our results provide a comprehensive structural framework for the investigation of Slo2.2 channel gating, Na+ sensation, and inhibition.


Asunto(s)
Canales de Potasio , Sodio , Humanos , Canales de Potasio/metabolismo , Microscopía por Crioelectrón , Canales de potasio activados por Sodio , Sodio/metabolismo
17.
Nat Struct Mol Biol ; 29(12): 1208-1216, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36424527

RESUMEN

Voltage-gated sodium channel NaV1.7 plays essential roles in pain and odor perception. NaV1.7 variants cause pain disorders. Accordingly, NaV1.7 has elicited extensive attention in developing new analgesics. Here we present cryo-EM structures of human NaV1.7/ß1/ß2 complexed with inhibitors XEN907, TC-N1752 and NaV1.7-IN2, explaining specific binding sites and modulation mechanism for the pore blockers. These inhibitors bind in the central cavity blocking ion permeation, but engage different parts of the cavity wall. XEN907 directly causes α- to π-helix transition of DIV-S6 helix, which tightens the fast inactivation gate. TC-N1752 induces π-helix transition of DII-S6 helix mediated by a conserved asparagine on DIII-S6, which closes the activation gate. NaV1.7-IN2 serves as a pore blocker without causing conformational change. Electrophysiological results demonstrate that XEN907 and TC-N1752 stabilize NaV1.7 in inactivated state and delay the recovery from inactivation. Our results provide structural framework for NaV1.7 modulation by pore blockers, and important implications for developing subtype-selective analgesics.


Asunto(s)
Dolor , Humanos , Sitios de Unión
18.
Nat Commun ; 13(1): 2713, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35581266

RESUMEN

Voltage-gated sodium (NaV) channels initiate action potentials. Fast inactivation of NaV channels, mediated by an Ile-Phe-Met motif, is crucial for preventing hyperexcitability and regulating firing frequency. Here we present cryo-electron microscopy structure of NaVEh from the coccolithophore Emiliania huxleyi, which reveals an unexpected molecular gating mechanism for NaV channel fast inactivation independent of the Ile-Phe-Met motif. An N-terminal helix of NaVEh plugs into the open activation gate and blocks it. The binding pose of the helix is stabilized by multiple electrostatic interactions. Deletion of the helix or mutations blocking the electrostatic interactions completely abolished the fast inactivation. These strong interactions enable rapid inactivation, but also delay recovery from fast inactivation, which is ~160-fold slower than human NaV channels. Together, our results provide mechanistic insights into fast inactivation of NaVEh that fundamentally differs from the conventional local allosteric inhibition, revealing both surprising structural diversity and functional conservation of ion channel inactivation.


Asunto(s)
Eucariontes , Canales de Sodio Activados por Voltaje , Potenciales de Acción , Microscopía por Crioelectrón , Eucariontes/metabolismo , Humanos , Sodio/metabolismo , Canales de Sodio Activados por Voltaje/genética
19.
iScience ; 25(11): 105266, 2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36304099

RESUMEN

Reducing the rate of translation promotes longevity in multiple organisms, representing a conserved mechanism for lifespan extension. Aminoacyl-tRNA synthetases (ARSs) catalyze the loading of amino acids to their cognate tRNAs, thereby playing an essential role in translation. Mutations in ARS genes are associated with various human diseases. However, little is known about the role of ARSs in aging, particularly whether and how these genes regulate lifespan. Here, using Caenorhabditis elegans as a model, we systematically characterized the role of all three types of ARS genes in lifespan regulation, including mitochondrial, cytoplasmic, and cyto-mito bifunctional ARS genes. We found that, as expected, RNAi knockdown of mitochondrial ARS genes extended lifespan. Surprisingly, knocking down cytoplasmic or cyto-mito bifunctional ARS genes shortened lifespan, though such treatment reduced the rate of translation. These results reveal opposing roles of mitochondrial and cytoplasmic ARSs in lifespan regulation, demonstrating that inhibiting translation may not always extend lifespan.

20.
Dev Cell ; 54(1): 106-116.e5, 2020 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-32533922

RESUMEN

Maintaining energy homeostasis upon environmental challenges, such as cold or excess calorie intake, is essential to the fitness and survival of mammals. Drug discovery efforts targeting ß-adrenergic signaling have not been fruitful after decades of intensive research. We recently identified a new beige fat regulatory pathway mediated via the nicotinic acetylcholine receptor subunit CHRNA2. Here, we generated fat-specific Chrna2 KO mice and observed thermogenic defects in cold and metabolic dysfunction upon dietary challenges caused by adipocyte-autonomous regulation in vivo. We found that CHRNA2 signaling is activated after acute high fat diet feeding and this effect is manifested through both UCP1- and creatine-mediated mechanisms. Furthermore, our data suggested that CHRNA2 signaling may activate glycolytic beige fat, a subpopulation of beige adipocytes mediated by GABPα emerging in the absence of ß-adrenergic signaling. These findings reveal the biological significance of the CHRNA2 pathway in beige fat biogenesis and energy homeostasis.


Asunto(s)
Adipocitos Beige/metabolismo , Receptores Nicotínicos/metabolismo , Transducción de Señal , Termogénesis , Animales , Línea Celular , Células Cultivadas , Creatina/metabolismo , Factor de Transcripción de la Proteína de Unión a GA/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Receptores Adrenérgicos beta/metabolismo , Receptores Nicotínicos/genética , Proteína Desacopladora 1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA