Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 356
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 21(11): 1444-1455, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32958928

RESUMEN

Acquisition of a lipid-laden phenotype by immune cells has been defined in infectious diseases and atherosclerosis but remains largely uncharacterized in cancer. Here, in breast cancer models, we found that neutrophils are induced to accumulate neutral lipids upon interaction with resident mesenchymal cells in the premetastatic lung. Lung mesenchymal cells elicit this process through repressing the adipose triglyceride lipase (ATGL) activity in neutrophils in prostaglandin E2-dependent and -independent manners. In vivo, neutrophil-specific deletion of genes encoding ATGL or ATGL inhibitory factors altered neutrophil lipid profiles and breast tumor lung metastasis in mice. Mechanistically, lipids stored in lung neutrophils are transported to metastatic tumor cells through a macropinocytosis-lysosome pathway, endowing tumor cells with augmented survival and proliferative capacities. Pharmacological inhibition of macropinocytosis significantly reduced metastatic colonization by breast tumor cells in vivo. Collectively, our work reveals that neutrophils serve as an energy reservoir to fuel breast cancer lung metastasis.


Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Metabolismo de los Lípidos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundario , Células Madre Mesenquimatosas/metabolismo , Neutrófilos/metabolismo , Animales , Biomarcadores , Proliferación Celular , Progresión de la Enfermedad , Endocitosis , Femenino , Técnica del Anticuerpo Fluorescente , Humanos , Ratones , Metástasis de la Neoplasia , Neutrófilos/ultraestructura
2.
Immunity ; 55(8): 1483-1500.e9, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35908547

RESUMEN

Primary tumors are drivers of pre-metastatic niche formation, but the coordination by the secondary organ toward metastatic dissemination is underappreciated. Here, by single-cell RNA sequencing and immunofluorescence, we identified a population of cyclooxygenase 2 (COX-2)-expressing adventitial fibroblasts that remodeled the lung immune microenvironment. At steady state, fibroblasts in the lungs produced prostaglandin E2 (PGE2), which drove dysfunctional dendritic cells (DCs) and suppressive monocytes. This lung-intrinsic stromal program was propagated by tumor-associated inflammation, particularly the pro-inflammatory cytokine interleukin-1ß, supporting a pre-metastatic niche. Genetic ablation of Ptgs2 (encoding COX-2) in fibroblasts was sufficient to reverse the immune-suppressive phenotypes of lung-resident myeloid cells, resulting in heightened immune activation and diminished lung metastasis in multiple breast cancer models. Moreover, the anti-metastatic activity of DC-based therapy and PD-1 blockade was improved by fibroblast-specific Ptgs2 deletion or dual inhibition of PGE2 receptors EP2 and EP4. Collectively, lung-resident fibroblasts reshape the local immune landscape to facilitate breast cancer metastasis.


Asunto(s)
Neoplasias Pulmonares , Subtipo EP2 de Receptores de Prostaglandina E , Ciclooxigenasa 2/genética , Fibroblastos/patología , Humanos , Pulmón/patología , Neoplasias Pulmonares/patología , Subtipo EP4 de Receptores de Prostaglandina E/genética , Microambiente Tumoral
3.
Nature ; 604(7907): 771-778, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35418677

RESUMEN

Adhesion G protein-coupled receptors (aGPCRs) constitute an evolutionarily ancient family of receptors that often undergo autoproteolysis to produce α and ß subunits1-3. A tethered agonism mediated by the 'Stachel sequence' of the ß subunit has been proposed to have central roles in aGPCR activation4-6. Here we present three cryo-electron microscopy structures of aGPCRs coupled to the Gs heterotrimer. Two of these aGPCRs are activated by tethered Stachel sequences-the ADGRG2-ß-Gs complex and the ADGRG4-ß-Gs complex (in which ß indicates the ß subunit of the aGPCR)-and the other is the full-length ADGRG2 in complex with the exogenous ADGRG2 Stachel-sequence-derived peptide agonist IP15 (ADGRG2(FL)-IP15-Gs). The Stachel sequences of both ADGRG2-ß and ADGRG4-ß assume a U shape and insert deeply into the seven-transmembrane bundles. Constituting the FXφφφXφ motif (in which φ represents a hydrophobic residue), five residues of ADGRG2-ß or ADGRG4-ß extend like fingers to mediate binding to the seven-transmembrane domain and activation of the receptor. The structure of the ADGRG2(FL)-IP15-Gs complex reveals the structural basis for the improved binding affinity of IP15 compared with VPM-p15 and indicates that rational design of peptidic agonists could be achieved by exploiting aGPCR-ß structures. By converting the 'finger residues' to acidic residues, we develop a method to generate peptidic antagonists towards several aGPCRs. Collectively, our study provides structural and biochemical insights into the tethered activation mechanism of aGPCRs.


Asunto(s)
Péptidos , Receptores Acoplados a Proteínas G , Microscopía por Crioelectrón , Humanos , Péptidos/metabolismo , Dominios Proteicos , Receptores Acoplados a Proteínas G/metabolismo
4.
Proc Natl Acad Sci U S A ; 120(38): e2306601120, 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37695899

RESUMEN

Cherenkov radiation occurs only when a charged particle moves with a velocity exceeding the phase velocity of light in that matter. This radiation mechanism creates directional light emission at a wide range of frequencies and could facilitate the development of on-chip light sources except for the hard-to-satisfy requirement for high-energy particles. Creating Cherenkov radiation from low-energy electrons that has no momentum mismatch with light in free space is still a long-standing challenge. Here, we report a mechanism to overcome this challenge by exploiting a combined effect of interfacial Cherenkov radiation and umklapp scattering, namely the constructive interference of light emission from sequential particle-interface interactions with specially designed (umklapp) momentum-shifts. We find that this combined effect is able to create the interfacial Cherenkov radiation from ultralow-energy electrons, with kinetic energies down to the electron-volt scale. Due to the umklapp scattering for the excited high-momentum Bloch modes, the resulting interfacial Cherenkov radiation is uniquely featured with spatially separated apexes for its wave cone and group cone.

5.
Nucleic Acids Res ; 51(D1): D1196-D1204, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36318242

RESUMEN

Alternative splicing (AS) is a fundamental process that governs almost all aspects of cellular functions, and dysregulation in this process has been implicated in tumor initiation, progression and treatment resistance. With accumulating studies of carcinogenic mis-splicing in cancers, there is an urgent demand to integrate cancer-associated splicing changes to better understand their internal cross-talks and functional consequences from a global view. However, a resource of key functional AS events in human cancers is still lacking. To fill the gap, we developed ASCancer Atlas (https://ngdc.cncb.ac.cn/ascancer), a comprehensive knowledgebase of aberrant splicing in human cancers. Compared to extant databases, ASCancer Atlas features a high-confidence collection of 2006 cancer-associated splicing events experimentally proved to promote tumorigenesis, a systematic splicing regulatory network, and a suit of multi-scale online analysis tools. For each event, we manually curated the functional axis including upstream splicing regulators, splicing event annotations, downstream oncogenic effects, and possible therapeutic strategies. ASCancer Atlas also houses about 2 million computationally putative splicing events. Additionally, a user-friendly web interface was built to enable users to easily browse, search, visualize, analyze, and download all splicing events. Overall, ASCancer Atlas provides a unique resource to study the functional roles of splicing dysregulation in human cancers.


Asunto(s)
Empalme Alternativo , Bases de Datos Genéticas , Neoplasias , Humanos , Empalme Alternativo/genética , Bases de Datos Factuales , Neoplasias/genética , Empalme del ARN , Atlas como Asunto
6.
J Cell Mol Med ; 28(7): e18266, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38501838

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC), a very aggressive tumour, is currently the third leading cause of cancer-related deaths. Unfortunately, many patients face the issue of inoperability at the diagnostic phase leading to a quite dismal prognosis. The onset of metastatic processes has a crucial role in the elevated mortality rates linked to PDAC. Individuals with metastatic advances receive only palliative therapy and have a grim prognosis. It is essential to carefully analyse the intricacies of the metastatic process to enhance the prognosis for individuals with PDAC. Malignancy development is greatly impacted by the process of macrophage efferocytosis. Our current knowledge about the complete range of macrophage efferocytosis activities in PDAC and their intricate interactions with tumour cells is still restricted. This work aims to resolve communication gaps and pinpoint the essential transcription factor that is vital in the immunological response of macrophage populations. We analysed eight PDAC tissue samples sourced from the gene expression omnibus. We utilized several software packages such as Seurat, DoubletFinder, Harmony, Pi, GSVA, CellChat and Monocle from R software together with pySCENIC from Python, to analyse the single-cell RNA sequencing (scRNA-seq) data collected from the PDAC samples. This study involved the analysis of a comprehensive sample of 22,124 cells, which were classified into distinct cell types. These cell types encompassed endothelial and epithelial cells, PDAC cells, as well as various immune cells, including CD4+ T cells, CD8+ T cells, NK cells, B cells, plasma cells, mast cells, monocytes, DC cells and different subtypes of macrophages, namely C0 macrophage TGM2+, C1 macrophage PFN1+, C2 macrophage GAS6+ and C3 macrophage APOC3+. The differentiation between tumour cells and epithelial cells was achieved by the implementation of CopyKat analysis, resulting in the detection and categorization of 1941 PDAC cells. The amplification/deletion patterns observed in PDAC cells on many chromosomes differ significantly from those observed in epithelial cells. The study of Pseudotime Trajectories demonstrated that the C0 macrophage subtype expressing TGM2+ had the lowest level of differentiation. Additionally, the examination of gene set scores related to efferocytosis suggested that this subtype displayed higher activity during the efferocytosis process compared to other subtypes. The most active transcription factors for each macrophage subtype were identified as BACH1, NFE2, TEAD4 and ARID3A. In conclusion, the examination of human PDAC tissue samples using immunofluorescence analysis demonstrated the co-localization of CD68 and CD11b within regions exhibiting the presence of keratin (KRT) and alpha-smooth muscle actin (α-SMA). This observation implies a spatial association between macrophages, fibroblasts, and epithelial cells. There is variation in the expression of efferocytosis-associated genes between C0 macrophage TGM2+ and other macrophage cell types. This observation implies that the diversity of macrophage cells might potentially influence the metastatic advancement of PDAC. Moreover, the central transcription factor of different macrophage subtypes offers a promising opportunity for targeted immunotherapy in the treatment of PDAC.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Eferocitosis , Análisis de Expresión Génica de una Sola Célula , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/patología , Macrófagos/metabolismo , Factores de Transcripción/metabolismo , Microambiente Tumoral , Proteínas de Unión al ADN/genética , Factores de Transcripción de Dominio TEA , Profilinas/genética
7.
Cell Commun Signal ; 22(1): 166, 2024 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-38454449

RESUMEN

BACKGROUND: Clinical and experimental studies have shown that the myocardial inflammatory response during pathological events varies between males and females. However, the cellular and molecular mechanisms of these sex differences remain elusive. CD73/adenosine axis has been linked to anti-inflammatory responses, but its sex-specific cardioprotective role is unclear. The present study aimed to investigate whether the CD73/adenosine axis elicits sex-dependent cardioprotection during metabolic changes and myocarditis induced by hypobaric hypoxia. METHODS: For 7 days, male and female mice received daily injections of the CD73 inhibitor adenosine 5'- (α, ß-methylene) diphosphate (APCP) 10 mg/kg/day while they were kept under normobaric normoxic and hypobaric hypoxic conditions. We evaluated the effects of hypobaric hypoxia on the CD73/adenosine axis, myocardial hypertrophy, and cardiac electrical activity and function. In addition, metabolic homeostasis and immunoregulation were investigated to clarify the sex-dependent cardioprotection of the CD73/adenosine axis. RESULTS: Hypobaric hypoxia-induced cardiac dysfunction and adverse remodeling were more pronounced in male mice. Also, male mice had hyperactivity of the CD73/adenosine axis, which aggravated myocarditis and metabolic shift compared to female mice. In addition, CD73 inhibition triggered prostatic acid phosphatase ectonucleotidase enzymatic activity to sustain adenosine overproduction in male mice but not in female mice. Moreover, dual inhibition prostatic acid phosphatase and CD73 enzymatic activities in male mice moderated adenosine content, alleviating glycolytic shift and proinflammatory response. CONCLUSION: The CD73/adenosine axis confers a sex-dependent cardioprotection. In addition, extracellular adenosine production in the hearts of male mice is influenced by prostatic acid phosphatase and tissue nonspecific alkaline phosphatase.


Asunto(s)
Adenosina , Miocarditis , Femenino , Masculino , Ratones , Animales , Miocarditis/metabolismo , Miocarditis/patología , Hipoxia/metabolismo , Miocardio/metabolismo , Corazón , 5'-Nucleotidasa/metabolismo
8.
Int J Legal Med ; 138(2): 361-373, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37843624

RESUMEN

The GA118-24B Genetic Analyzer (hereafter, "GA118-24B") is an independently developed capillary electrophoresis instrument. In the present research, we designed a series of validation experiments to test its performance at detecting DNA fragments compared to the Applied Biosystems 3500 Genetic Analyzer (hereafter, "3500"). Three commercially available autosomal short tandem repeat multiplex kits were used in this validation. The results showed that GA118-24B had acceptable spectral calibration for three kits. The results of accuracy and concordance studies were also satisfactory. GA118-24B showed excellent precision, with a standard deviation of less than 0.1 bp. Sensitivity and mixture studies indicated that GA118-24B could detect low-template DNA and complex mixtures as well as the results generated by 3500 in parallel experiments. Based on the experimental results, we set specific analytical and stochastic thresholds. Besides, GA118-24B showed superiority than 3500 within certain size ranges in the resolution study. Instead of conventional commercial multiplex kits, GA118-24B performed stably on a self-developed eight-dye multiplex system, which were not performed on 3500 Genetic Analyzer. We compared our validation results with those of previous research and found our results to be convincing. Overall, we conclude that GA118-24B is a stable and reliable genetic analyzer for forensic DNA identification.


Asunto(s)
Dermatoglifia del ADN , ADN , Humanos , Dermatoglifia del ADN/métodos , Reacción en Cadena de la Polimerasa/métodos , Repeticiones de Microsatélite , Electroforesis Capilar/métodos
9.
Int J Legal Med ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39134883

RESUMEN

The PowerPlex® 35GY System (Promega, USA) is an advanced eight-dye multiplex STR kit, incorporating twenty-three autosomal STR loci, eleven Y chromosome STR loci, one sex determining marker Amelogenin, and two quality indicators. This multiplex system includes 20 CODIS loci and up to 15 mini-STR loci with sizing values less than 250 bases. In this study, validation for PowerPlex® 35GY System was conducted following the guidelines of SWGDAM, encompassing sensitivity, precision, accuracy, concordance, species specificity, stutter, mixture, stability, and degraded DNA. The results from experiments demonstrated that the PowerPlex® 35GY System could effectively amplify DNA samples, with complete allele detection achieved at 125 pg. Moreover, over 90% of alleles from minor contributors were detected at a mixed ratio of 1:4. Additionally, the system was found to yield full profiles even in the presence of hematin, humic acid, and indigo. The PowerPlex® 35GY System demonstrated superior performance in the sensitivity and degraded DNA studies compared to a six-dye STR kit. Hence, it is evident that the PowerPlex® 35GY System is well-suited for forensic practice, whether in casework or for database samples. These findings provide strong support for the efficacy and reliability of the PowerPlex® 35GY System in forensic applications.

10.
Nucleic Acids Res ; 50(D1): D380-D386, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34570235

RESUMEN

Single-cell bisulfite sequencing methods are widely used to assess epigenomic heterogeneity in cell states. Over the past few years, large amounts of data have been generated and facilitated deeper understanding of the epigenetic regulation of many key biological processes including early embryonic development, cell differentiation and tumor progression. It is an urgent need to build a functional resource platform with the massive amount of data. Here, we present scMethBank, the first open access and comprehensive database dedicated to the collection, integration, analysis and visualization of single-cell DNA methylation data and metadata. Current release of scMethBank includes processed single-cell bisulfite sequencing data and curated metadata of 8328 samples derived from 15 public single-cell datasets, involving two species (human and mouse), 29 cell types and two diseases. In summary, scMethBank aims to assist researchers who are interested in cell heterogeneity to explore and utilize whole genome methylation data at single-cell level by providing browse, search, visualization, download functions and user-friendly online tools. The database is accessible at: https://ngdc.cncb.ac.cn/methbank/scm/.


Asunto(s)
Metilación de ADN , Bases de Datos Genéticas , Epigénesis Genética , Genoma , Metadatos/estadística & datos numéricos , Programas Informáticos , Animales , Mapeo Cromosómico , Conjuntos de Datos como Asunto , Humanos , Internet , Ratones , Anotación de Secuencia Molecular , Análisis de la Célula Individual , Secuenciación Completa del Genoma
11.
Chem Biodivers ; : e202401460, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39152549

RESUMEN

Cardenolides are a class of steroidal glycoside compounds that are mainly distributed in plants, have significant physiological activity in the heart, and have been used clinically for over 200 years. To provide a reference for further research and development of these compounds, the phytochemical and biological properties of natural cardenolides (295 compounds in total) isolated between 2010 and 2023 from 17 families and hundreds of species belonging to 70-80 genera were reviewed. In vitro and in vivo studies have indicated that antitumor, antibacterial, and antiviral activities are the most commonly reported pharmacological properties of cardenolides. Antitumor activities have been thoroughly studied to understand their structure-activity relationships, revealing numerous potential anticancer molecules that lay the theoretical foundation for further development of traditional Chinese medicinal herbs and the creation of new drugs.

12.
Environ Toxicol ; 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38634192

RESUMEN

Increasing evidence has suggested a strong association of hepatocellular carcinoma (HCC) susceptibility and Gln223Arg (rs1137101) and Lys109Arg (rs1137100) polymorphisms in leptin receptor (LEPR) genes. To provide a quantitative assessment for such correlation, we reviewed all related systems and conducted meta-analysis for case and control researches. A literature search of Web of Science, EMBASE, PubMed, Scopus as well as China National Knowledge Infrastructure databases was collected. 95% confidence intervals (95% CIs) together with odds ratios (ORs) were calculated. Five case-control researches consisting of 1323 cases and 1919 control cases were incorporated into meta-analysis. Researches indicated A-allelic and AA genotype of rs1137101 were substantially related to boosted susceptibility of hepatitis B virus (HBV)-related HCC (mutant model, OR = 1.81, 95% CI = 1.36-2.41, p < .001; allelic model, OR = 1.55, 95% CI = 1.32-1.83, p < .001). On the contrary, we observed GG genotype of rs1137101 substantially related to reduced risk of HBV-related HCC (wild model, OR 0.59, 95%CI = 0.46-0.75, p < .001). We observed AA genotype of rs1137100 relevant to boosted HCC risk (mutant model, OR = 1.51, 95%CI = 1.14-2.01, p = .005) as well as in those with HBV-related HCCs (homozygous model, OR = 2.12, 95%CI = 1.49-3.02, p < .001; mutant model, OR = 1.67, 95%CI = 1.23-2.26, p = .001). G-allele and AA genotype of rs1137101 might be in connection with boosted HBV-related HCC susceptibility, and wild-type GG genotype might prevent diseases. AA genotype of rs1137100 might also improve HBV-related HCC susceptibility. Such conclusions ought to be validated by larger and better-designed researches.

13.
Sensors (Basel) ; 24(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38732788

RESUMEN

Focused microwave breast hyperthermia (FMBH) employs a phased antenna array to perform beamforming that can focus microwave energy at targeted breast tumors. Selective heating of the tumor endows the hyperthermia treatment with high accuracy and low side effects. The effect of FMBH is highly dependent on the applied phased antenna array. This work investigates the effect of polarizations of antenna elements on the microwave-focusing results by simulations. We explore two kinds of antenna arrays with the same number of elements using different digital realistic human breast phantoms. The first array has all the elements' polarization in the vertical plane of the breast, while the second array has half of the elements' polarization in the vertical plane and the other half in the transverse plane, i.e., cross polarization. In total, 96 sets of different simulations are performed, and the results show that the second array leads to a better focusing effect in dense breasts than the first array. This work is very meaningful for the potential improvement of the antenna array for FMBH, which is of great significance for the future clinical applications of FMBH. The antenna array with cross polarization can also be applied in microwave imaging and sensing for biomedical applications.


Asunto(s)
Neoplasias de la Mama , Hipertermia Inducida , Microondas , Fantasmas de Imagen , Humanos , Microondas/uso terapéutico , Neoplasias de la Mama/terapia , Hipertermia Inducida/métodos , Femenino , Mama/patología , Simulación por Computador
14.
Sensors (Basel) ; 24(16)2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39204924

RESUMEN

With the advancement of computer vision and sensor technologies, many multi-camera systems are being developed for the control, planning, and other functionalities of unmanned systems or robots. The calibration of multi-camera systems determines the accuracy of their operation. However, calibration of multi-camera systems without overlapping parts is inaccurate. Furthermore, the potential of feature matching points and their spatial extent in calculating the extrinsic parameters of multi-camera systems has not yet been fully realized. To this end, we propose a multi-camera calibration algorithm to solve the problem of the high-precision calibration of multi-camera systems without overlapping parts. The calibration of multi-camera systems is simplified to the problem of solving the transformation relationship of extrinsic parameters using a map constructed by multiple cameras. Firstly, the calibration environment map is constructed by running the SLAM algorithm separately for each camera in the multi-camera system in closed-loop motion. Secondly, uniformly distributed matching points are selected among the similar feature points between the maps. Then, these matching points are used to solve the transformation relationship between the multi-camera external parameters. Finally, the reprojection error is minimized to optimize the extrinsic parameter transformation relationship. We conduct comprehensive experiments in multiple scenarios and provide results of the extrinsic parameters for multiple cameras. The results demonstrate that the proposed method accurately calibrates the extrinsic parameters for multiple cameras, even under conditions where the main camera and auxiliary cameras rotate 180°.

15.
Sensors (Basel) ; 24(8)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38676042

RESUMEN

The accurate segmentation and quantification of retinal fluid in Optical Coherence Tomography (OCT) images are crucial for the diagnosis and treatment of ophthalmic diseases such as age-related macular degeneration. However, the accurate segmentation of retinal fluid is challenging due to significant variations in the size, position, and shape of fluid, as well as their complex, curved boundaries. To address these challenges, we propose a novel multi-scale feature fusion attention network (FNeXter), based on ConvNeXt and Transformer, for OCT fluid segmentation. In FNeXter, we introduce a novel global multi-scale hybrid encoder module that integrates ConvNeXt, Transformer, and region-aware spatial attention. This module can capture long-range dependencies and non-local similarities while also focusing on local features. Moreover, this module possesses the spatial region-aware capabilities, enabling it to adaptively focus on the lesions regions. Additionally, we propose a novel self-adaptive multi-scale feature fusion attention module to enhance the skip connections between the encoder and the decoder. The inclusion of this module elevates the model's capacity to learn global features and multi-scale contextual information effectively. Finally, we conduct comprehensive experiments to evaluate the performance of the proposed FNeXter. Experimental results demonstrate that our proposed approach outperforms other state-of-the-art methods in the task of fluid segmentation.


Asunto(s)
Retina , Tomografía de Coherencia Óptica , Tomografía de Coherencia Óptica/métodos , Humanos , Retina/diagnóstico por imagen , Algoritmos , Redes Neurales de la Computación , Procesamiento de Imagen Asistido por Computador/métodos , Degeneración Macular/diagnóstico por imagen , Degeneración Macular/patología
16.
Am J Physiol Cell Physiol ; 324(2): C505-C516, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36622065

RESUMEN

G protein-coupled receptor kinase 2 (GRK2) is a multifunctional protein involved in regulating G protein-coupled receptor (GPCR) and non-GPCR signaling in the body. In the cardiovascular system, increased expression of GRK2 has been implicated in the occurrence and development of several cardiovascular diseases (CVDs). Recent studies have found gender differences in GRK2 in the cardiovascular system under physiological and pathological conditions, where GRK2's expression and activity are increased in males than in females. The incidence of CVDs in premenopausal women is lower than in men of the same age, which is related to estrogen levels. Given the shared location of GRK2 and estrogen receptors, estrogen may interact with GRK2 by modulating vital molecules such as calmodulin (CaM), caveolin, RhoA, nitrate oxide (NO), and mouse double minute 2 homolog (Mdm2), via signaling pathways mediated by estrogen's genomic (ERα and ERß), and non-genomic (GPER) receptors, conferring cardiovascular protection in females. Highlighting the gender differences in GRK2 and understanding its interaction with estrogen in the cardiovascular system is pertinent in treating gender-related CVDs. As a result, this article explores the gender differences of GRK2 in the cardiovascular system and its relationship with estrogen during disease conditions. Estrogen's protective and therapeutic effects and its mechanism on GRK2-related cardiovascular diseases have also been discussed.


Asunto(s)
Enfermedades Cardiovasculares , Animales , Femenino , Masculino , Ratones , Enfermedades Cardiovasculares/genética , Estrógenos , Receptores de Estrógenos/genética , Receptores Acoplados a Proteínas G/genética , Factores Sexuales , Transducción de Señal/fisiología , Humanos
17.
J Cell Mol Med ; 27(13): 1836-1858, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37246833

RESUMEN

Cardiac arrest (CA) can result in cerebral ischaemia-reperfusion injury and poor neurological outcomes. While bone marrow-derived mesenchymal stem cells (BMSCs) have been shown to have protective effects in brain ischaemic disease, their efficacy can be reduced by the poor oxygen environment. In this study, we investigated the neuroprotective effects of hypoxic preconditioned BMSCs (HP-BMSCs) and normoxic BMSCs (N-BMSCs) in a cardiac arrest rat model by examining their ability to ameliorate cell pyroptosis. The mechanism underlying the process was also explored. Cardiac arrest was induced in rats for 8 min and surviving rats received 1 × 106 normoxic/hypoxic BMSCs or PBS via intracerebroventricular (ICV) transplantation. Neurological function of rats was evaluated using neurological deficit scores (NDSs) and examined for brain pathology. Serum S100B and neuron-specific enolase (NSE) levels and cortical proinflammatory cytokines were measured to evaluate brain injury. Pyroptosis-related proteins in the cortex after cardiopulmonary resuscitation (CPR) were measured using western blotting and immunofluorescent staining. Transplanted BMSCs were tracked using bioluminescence imaging. Results showed significantly better neurological function and neuropathological damage after transplantation with HP-BMSCs. In addition, HP-BMSCs reduced levels of pyroptosis-related proteins in the rat cortex after CPR and significantly reduced levels of biomarkers for brain injury. Mechanistically, HP-BMSCs alleviated brain injury by reducing the expressions of HMGB1, TLR4, NF-κB p65, p38 MAPK and JNK in the cortex. Our study demonstrated that hypoxic preconditioning could enhance the efficacy of BMSCs in alleviating post-resuscitation cortical pyroptosis. This effect may be related to the regulation of the HMGB1/TLR4/NF-κB, MAPK signalling pathways.


Asunto(s)
Lesiones Encefálicas , Reanimación Cardiopulmonar , Proteína HMGB1 , Paro Cardíaco , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Ratas , Animales , Ratas Sprague-Dawley , FN-kappa B , Piroptosis , Receptor Toll-Like 4 , Hipoxia/patología , Paro Cardíaco/terapia , Reanimación Cardiopulmonar/métodos , Células Madre Mesenquimatosas/metabolismo
18.
J Transl Med ; 21(1): 103, 2023 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-36759834

RESUMEN

BACKGROUND: Recent numerous epidemiology and clinical association studies reported that ApoE polymorphism might be associated with the risk and severity of coronavirus disease 2019 (COVID-19), and yielded inconsistent results. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection relies on its spike protein binding to angiotensin-converting enzyme 2 (ACE2) receptor expressed on host cell membranes. METHODS: A meta-analysis was conducted to clarify the association between ApoE polymorphism and the risk and severity of COVID-19. Multiple protein interaction assays were utilized to investigate the potential molecular link between ApoE and the SARS-CoV-2 primary receptor ACE2, ApoE and spike protein. Immunoblotting and immunofluorescence staining methods were used to access the regulatory effect of different ApoE isoform on ACE2 protein expression. RESULTS: ApoE gene polymorphism (ε4 carrier genotypes VS non-ε4 carrier genotypes) is associated with the increased risk (P = 0.0003, OR = 1.44, 95% CI 1.18-1.76) and progression (P < 0.00001, OR = 1.85, 95% CI 1.50-2.28) of COVID-19. ApoE interacts with both ACE2 and the spike protein but did not show isoform-dependent binding effects. ApoE4 significantly downregulates ACE2 protein expression in vitro and in vivo and subsequently decreases the conversion of Ang II to Ang 1-7. CONCLUSIONS: ApoE4 increases SARS-CoV-2 infectivity in a manner that may not depend on differential interactions with the spike protein or ACE2. Instead, ApoE4 downregulates ACE2 protein expression and subsequently the dysregulation of renin-angiotensin system (RAS) may provide explanation by which ApoE4 exacerbates COVID-19 disease.


Asunto(s)
COVID-19 , Humanos , Sistema Renina-Angiotensina/fisiología , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/farmacología , SARS-CoV-2 , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Apolipoproteína E4/farmacología , Regulación hacia Abajo/genética , Glicoproteína de la Espiga del Coronavirus/genética , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/metabolismo
19.
Phys Rev Lett ; 130(1): 015101, 2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36669225

RESUMEN

Plasma current filamentation of an ultrarelativistic electron beam impinging on an overdense plasma is investigated, with emphasis on radiation-induced electron polarization. Particle-in-cell simulations provide the classification and in-depth analysis of three different regimes of the current filaments, namely, the normal filament, abnormal filament, and quenching regimes. We show that electron radiative polarization emerges during the instability along the azimuthal direction in the momentum space, which significantly varies across the regimes. We put forward an intuitive Hamiltonian model to trace the origin of the electron polarization dynamics. In particular, we discern the role of nonlinear transverse motion of plasma filaments, which induces asymmetry in radiative spin flips, yielding an accumulation of electron polarization. Our results break the conventional perception that quasisymmetric fields are inefficient for generating radiative spin-polarized beams, suggesting the potential of electron polarization as a source of new information on laboratory and astrophysical plasma instabilities.


Asunto(s)
Citoesqueleto , Electrones , Movimiento (Física) , Plasma
20.
Phys Rev Lett ; 131(22): 225101, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38101383

RESUMEN

Transient electron dynamics near the interface of counterstreaming plasmas at the onset of a relativistic collisionless shock (RCS) is investigated using particle-in-cell simulations. We identify a slingshotlike injection process induced by the drifting electric field sustained by the flowing focus of backward-moving electrons, which is distinct from the well-known stochastic acceleration. The flowing focus signifies the plasma kinetic transition from a preturbulent laminar motion to a chaotic turbulence. We find a characteristic correlation between the electron dynamics in the slingshot acceleration and the photon emission features. In particular, the integrated radiation from the RCS exhibits a counterintuitive nonmonotonic dependence of the photon polarization degree on the photon energy, which originates from a polarization degradation of relatively high-energy photons emitted by the slingshot-injected electrons. Our results demonstrate the potential of photon polarization as an essential information source in exploring intricate transient dynamics in RCSs with relevance for Earth-based plasma and astrophysical scenarios.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA