Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Chemistry ; : e202402558, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39158512

RESUMEN

The high electrochemical reactivity of H2O molecules and zinc metal results in severe side reactions and dendrite formation on zinc anodes. Here we demonstrate that these issues can be addressed by using N-hydroxymethylacetamide (NHA) as additives in 2 M ZnSO4 electrolytes. The addition of NHA molecules, acting as both a hydrogen bond donor and acceptor, enables the formation of cyclic hydrogen bonding with H2O molecules. This interaction disrupts the existing hydrogen bonding networks between H2O molecules, hindering proton transport, and containing H2O molecules within the cyclic hydrogen bonding structure to prevent deprotonation. Additionally, NHA molecules show a preference for adsorption on the (101) crystal surface of zinc metal. This preferential adsorption reduces the surface energy of the (101) plane, facilitating the homogeneous Zn deposition along the (101) direction. Thus, the NHA enables Zn||Zn symmetric cell with a cycle lifespan of 1100 hours at 5 mA cm-2 and Zn||Cu asymmetric cell with a high Coulombic efficiency over 99.5%. Moreover, the NHA-modified Zn||AC zinc ion hybrid capacitor is capable of sustaining 15000 cycles at 2 A g-1. This electrolyte additive engineering presents a promising strategy to enhance the performance and broaden the application potential of zinc metal-based energy storage devices.

2.
Nanotechnology ; 35(37)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38857588

RESUMEN

The development of electrochemical energy storage devices has a decisive impact on clean renewable energy. Herein, novel ultrafast rechargeable hybrid sodium dual-ion capacitors (HSDICs) were designed by using ultrathin carbon film (UCF) as the cathode material. The UCF is synthesized by a simple low temperature catalytic route followed by an acid leaching process. UCF owns a large adsorption interface and number of additional active sites, which is due to the nitrogen doping. In addition, there exists several short-range order carbons on the surface of UCF, which are beneficial for anionic storage. An ultrafast rechargeable remarkable performance, remarkable anion hybrid storage capability and outstanding structure stability is fully tapped employing UCF as cathode for HSDICs. The electrochemical performance of UCF in a half-cell system at the operating voltage between 1.0 and 4.8 V, achieving an admirable specific discharge capacity of 358.52 mAh·g-1at 500 mA·g-1, and a high capacity retention ratio of 98.42% after cycling 2500 times at 1000 mA·g-1, respectively. Besides, with the support ofex-situTEM and EDS mapping, the structural stability principle and anionic hybrid storage mechanism of UCF electrode are investigated in depth. In the full-cell system, HSDICs with the UCF as cathode and hard carbon as anode also presents a super-long cycle stability (80.62% capacity retention ratio after cycling 1300 times at 1000 mA·g-1).

3.
Foods ; 13(11)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38890916

RESUMEN

Maillard reaction intermediate (MRI) was prepared by the enzymatic hydrolysate (EH) of Oudemansiella raphanipes and fructose. The optimal preparation condition of MRIs was obtained when the Maillard reaction parameters were as follows: fructose addition of 5%, reaction time of 60 min, and temperature of 60 °C. E-Tongue results indicated that the umami and saltiness of MRIs were greater than those of Maillard reaction products (MRPs) and EH, and the taste-enhancing ability of MRIs was even more prominent than that of MRPs. E-Nose could obviously distinguish EH, MRIs, and MRPs, and there was an obvious difference between MRPs and MRIs regarding volatile aroma compounds. A total of 35 volatile flavor substances were identified among the three samples, including 6 alcohols, 13 aldehydes, 9 ketones, 2 esters, and 5 other compounds. Overall, MRIs could avoid the production of complete reaction products with an inferior flavor, and further enhance the umami taste.

4.
Foods ; 13(17)2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39272530

RESUMEN

Our research focused on the integration of Flammulina velutipes soluble dietary fiber (Fv-SDF) into wheat flour during the production of dried noodles, delving into the impact of different addition ratios of Fv-SDF on both dough processing characteristics and the quality of the micro-fermented dried noodles. The viscometric and thermodynamic analyses revealed that Fv-SDF notably improved the thermal stability of the mix powder, reduced viscosity, and delayed starch aging. Additionally, Fv-SDF elevated the gelatinization temperature and enthalpy value of the blend. Farinograph Properties and dynamic rheology properties further indicated that Fv-SDF improved dough formation time, stability time, powder quality index, and viscoelasticity. Notably, at a 10% Fv-SDF addition, the noodles achieved the highest sensory score (92) and water absorption rate (148%), while maintaining a lower dry matter loss rate (5.2%) and optimal cooking time (142 s). Gas chromatography-ion mobility spectrometry (GC-IMS) analysis showed that 67 volatile substances were detected, and the contents of furfural, 1-hydroxy-2-acetone, propionic acid, and 3-methylbutyraldehyde were higher in the Fv-SDF 10% group. These 10% Fv-SDF micro-fermented noodles were not only nutritionally enhanced, but also had a unique flavor. This study provides a valuable theoretical basis for the industrial application of F. velutipes and the development of high-quality dried noodles rich in Fv-SDF.

5.
Food Chem ; 409: 135336, 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-36586263

RESUMEN

Chitin as the second plentiful polysaccharide has arouse widely attention due to its remarkable availability and biocompatibility. While the strong inter/intra molecular hydrogen bonds and crystallinity severely restrict its applications. Recently, multiple emerging technologies are increasingly used to modify chitin structure for the sake of obtaining excellent functional properties, as well as broadening the corresponding applications. Firstly, this review systematically outlines the features of single and combined methods for chitin modification. Then, the impacts of various modifying methods on the structural characteristics of chitin, including molecular weight, degree of acetylation and functional groups, are further summarized. In addition, the effects of these structural characteristics on the functional properties as well as its potential related applications are illustrated. The conclusion of this review provides better understanding of the relationships among the modifying methods, structure, properties and applications, contributing to chitin modification for the targeted purpose in the future study.


Asunto(s)
Quitina , Quitosano , Quitina/química , Quitosano/química , Polisacáridos , Acetilación , Peso Molecular
6.
Food Res Int ; 167: 112580, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37087201

RESUMEN

This study aimed to investigate changes of milk fat globules (MFG) and their membranes after thermal treatments, and further analyzed the relationship between the stability of MFG and interfacial compositions of milk fat globule membrane (MFGM). We characterized the influence of three kinds of thermal treatments on fat globule interfacial components (including interfacial phospholipids and interfacial protein) and physical properties using phospholipidomics and several microscopy techniques. The results showed that size of MFG increased from 2.96 µm to 3.59 µm and ζ-potential decreased from -9.71 mV to -13.23 mV after thermal treatment, suggesting that MFGM was damaged and MFG occurred coalescence. Thermal treatment increased the Young's modulus of MFGM and made membranes more fragile. The abundance of MFGM proteins decreased while casein and ß-lactoglobulin increased after thermal treatment. Results of phospholipidomics showed that 27 phospholipid species could be used to distinguish the samples. Pasteurization reduced mainly SM and PC located in the outer bilayer of MFGM, while ultra-pasteurization reduced not only SM and PC but also PI and PE located in the inner leaflet. Based on correlation analysis, the increase in Young's modulus of MFGM during thermal treatment might be related to changes in chemical components on the membrane, suggesting a potential link between the change of MFGM components and fat globule coalescence behavior.


Asunto(s)
Glucolípidos , Glicoproteínas , Glucolípidos/química , Glicoproteínas/química , Gotas Lipídicas/química , Caseínas/análisis , Fosfolípidos
7.
Foods ; 11(19)2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36230096

RESUMEN

In this paper, emulsions stabilized by Tremella fuciformis polysaccharides (TFP) were prepared and the physiochemical properties were assessed. Results showed that the TFP emulsions illustrated the highest emulsifying activity (EAI) and emulsifying stability (ESI) when the concentration of TFP and oil were 0.8% and 10% (wt%). The higher pH value was in favor of the emulsifying properties, while the addition of NaCl impaired the stability, and the greater the concentration, the lower the EAI and ESI. Besides, the emulsifying and rheological properties and stability analysis were evaluated in comparison with gum arabic, pectin, and carboxymethyl cellulose emulsions. It was discovered that TFP illustrated better storage and freeze-thaw stability, which was proved by the result of zeta-potential and particle size. The rheological measurement revealed that all the emulsions behaved as pseudoplastic fluids, while TFP displayed a higher viscosity. Meanwhile, TFP emulsions tended to form a more stable network structure according to the analysis of the parameters obtained from the Herschel-Bulkley model. FTIR spectra suggested that the O-H bond could be destructed without the formation of new covalent bonds during the emulsion preparation. Therefore, this study would be of great importance for the research of emulsions stabilized by TFP as a natural food emulsifier.

8.
Front Nutr ; 8: 771757, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34765633

RESUMEN

Auricularia polytricha (A. polytricha), regarded as an edible and medical mushroom, has attracted toward the research interests because of the high nutrition and bioactivity. The nutritional and medical properties of A. polytricha have been well-studied; however, research about the difference of the nutritional properties and transcriptome profiling between the two different harvesting periods of A. polytricha was limited. In this study, the nutritional properties and transcriptome profiling were compared between the two different harvesting periods of A. polytricha: AP_S1 (the stage for the first harvesting period) and AP_S2 (the stage for the third harvesting period). This study showed that AP_S1 had the more growth advantages than AP_S2 including biomass, auricle area and thickness, protein and calcium contents, and most species of the amino acid contents, which contributed to the higher sensory evaluation and acceptability of AP_S1. Transcriptome profiling showed that a total of 30,298 unigenes were successfully annotated in the two different harvesting periods of A. polytricha. At a threshold of two-fold change, 1,415 and 3,213 unigenes were up- and downregulated, respectively. All the differentially expressed genes (DEGs) analysis showed that the some synthesis and metabolic processes were strengthened in AP_S1, especially the synthesis and metabolism of the amino acids and protein. The enhanced energy metabolism pathways could provide more energy for AP_S1 to synthesize the nutritional substance. Moreover, the expressions of 10 selected DEGs involved in the amino acid and protein synthesis pathways and energy metabolism pathways were higher in AP_S1 compared to AP_S2, consistent with Illumina analysis. To the best of our knowledge, this is the first study that compares the nutritional properties and transcriptome profiling between the two different harvesting periods of A. polytricha and the results can present insights into the growth and genetic characteristics of A. polytricha.

9.
Food Sci Nutr ; 8(11): 6131-6143, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33282264

RESUMEN

Dietary fiber (DF) has gained a great attention owing to its potential health benefits. Agrocybe cylindracea is an edible fungus with high protein and low fat contents, which is also an enriched source of DF. However, limited study has been conducted on optimizing the conditions of A. cylindracea-derived DF extraction and modification as well as characterizing its properties. In this study, ultrasound-assisted enzymatic method for DF extraction was optimized as the following conditions: liquid material ratio of 29 ml/g, α-amylase concentration of 1.50%, protamex concentration of 1.20%, and ultrasonic power of 150 W, which improved the DF extraction yield to 37.70%. Moreover, high temperature modification (HTM) and cellulase modification (CEM) were applied to modify A. cylindracea-derived DF. The results showed that HTM had more potential capacity in converting insoluble DF into soluble DF, and DF with HTM exhibited more advantages in its physicochemical properties than DF with CEM. The DF with both HTM and CEM showed antioxidant activities, reflected by the increased reducing power as well as DPPH radical, hydroxyl radical, and ABTS+ scavenging capabilities in vitro. These findings could offer a reference for the extraction, modification, and characterizing various properties of DF from A. cylindracea, which would establish the foundation for the comprehensive application of fungi-derived DF.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA