Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Dev Dyn ; 248(10): 969-978, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31397023

RESUMEN

BACKGROUND: Lin28 regulates stem cell biology and developmental timing. At the molecular level Lin28 inhibits the biogenesis of the micro RNA let-7 and directly controls the transcription and translation of several genes. In Xenopus, Lin28 overexpression delays metamorphosis and affects the expression of genes of the thyroid hormone (TH) axis. The TH carrier albumin, synthesized by the liver, is down-regulated in limbs and tail after Lin28 overexpression. The molecular mechanisms underlying the interaction between Lin28, let-7, and the hypothalamus-pituitary-thyroid gland (HPT) axis are unknown. RESULTS: We found that precursor and mature forms of let-7 increase during Xenopus metamorphosis. In the liver, lin28b is down-regulated and albumin is up-regulated during metamorphosis. Overexpression of a truncated form of Lin28a (Lin28aΔC), which has been shown not to interact with RNA helicase A to regulate translation, delays metamorphosis, indicating that the translational regulation domain is not required to inhibit the HPT axis. Importantly, both full length Lin28a and Lin28aΔC block the increase of albumin mRNA in the liver independently of changes in TH signaling. CONCLUSIONS: These results suggest that Lin28 delays metamorphosis through regulation of let-7 and that the decrease of the TH carrier albumin is one of the early changes after Lin28 overexpression.


Asunto(s)
Albúminas/metabolismo , Metamorfosis Biológica/efectos de los fármacos , Proteínas de Unión al ARN/metabolismo , Proteínas de Xenopus/metabolismo , Animales , Regulación hacia Abajo , Regulación del Desarrollo de la Expresión Génica , Hígado/metabolismo , MicroARNs/antagonistas & inhibidores , Biosíntesis de Proteínas , Dominios Proteicos , Proteínas de Unión al ARN/farmacología , Hormonas Tiroideas/metabolismo , Proteínas de Xenopus/farmacología , Xenopus laevis
2.
Neural Dev ; 16(1): 2, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33526076

RESUMEN

BACKGROUND: The efficient regenerative abilities at larvae stages followed by a non-regenerative response after metamorphosis in froglets makes Xenopus an ideal model organism to understand the cellular responses leading to spinal cord regeneration. METHODS: We compared the cellular response to spinal cord injury between the regenerative and non-regenerative stages of Xenopus laevis. For this analysis, we used electron microscopy, immunofluorescence and histological staining of the extracellular matrix. We generated two transgenic lines: i) the reporter line with the zebrafish GFAP regulatory regions driving the expression of EGFP, and ii) a cell specific inducible ablation line with the same GFAP regulatory regions. In addition, we used FACS to isolate EGFP+ cells for RNAseq analysis. RESULTS: In regenerative stage animals, spinal cord regeneration triggers a rapid sealing of the injured stumps, followed by proliferation of cells lining the central canal, and formation of rosette-like structures in the ablation gap. In addition, the central canal is filled by cells with similar morphology to the cells lining the central canal, neurons, axons, and even synaptic structures. Regeneration is almost completed after 20 days post injury. In non-regenerative stage animals, mostly damaged tissue was observed, without clear closure of the stumps. The ablation gap was filled with fibroblast-like cells, and deposition of extracellular matrix components. No reconstruction of the spinal cord was observed even after 40 days post injury. Cellular markers analysis confirmed these histological differences, a transient increase of vimentin, fibronectin and collagen was detected in regenerative stages, contrary to a sustained accumulation of most of these markers, including chondroitin sulfate proteoglycans in the NR-stage. The zebrafish GFAP transgenic line was validated, and we have demonstrated that is a very reliable and new tool to study the role of neural stem progenitor cells (NSPCs). RNASeq of GFAP::EGFP cells has allowed us to clearly demonstrate that indeed these cells are NSPCs. On the contrary, the GFAP::EGFP transgene is mainly expressed in astrocytes in non-regenerative stages. During regenerative stages, spinal cord injury activates proliferation of NSPCs, and we found that are mainly differentiated into neurons and glial cells. Specific ablation of these cells abolished proper regeneration, confirming that NSPCs cells are necessary for functional regeneration of the spinal cord. CONCLUSIONS: The cellular response to spinal cord injury in regenerative and non-regenerative stages is profoundly different between both stages. A key hallmark of the regenerative response is the activation of NSPCs, which massively proliferate, and are differentiated into neurons to reconstruct the spinal cord. Also very notably, no glial scar formation is observed in regenerative stages, but a transient, glial scar-like structure is formed in non-regenerative stage animals.


Asunto(s)
Células-Madre Neurales , Traumatismos de la Médula Espinal , Regeneración de la Medula Espinal , Animales , Médula Espinal , Xenopus laevis , Pez Cebra
3.
J Comp Neurol ; 526(10): 1712-1732, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29603210

RESUMEN

Studying the cellular composition and morphological changes of cells lining the central canal during Xenopus laevis metamorphosis could contribute to understand postnatal development and spinal cord regeneration. Here we report the analysis of central canal cells at different stages during metamorphosis using immunofluorescence for protein markers expression, transmission and scanning electron microscopy and cell proliferation assays. The central canal was regionalized according to expression of glial markers, ultrastructure, and proliferation in dorsal, lateral, and ventral domains with differences between larvae and froglets. In regenerative larvae, all cell types were uniciliated, have a radial morphology, and elongated nuclei with lax chromatin, resembling radial glial cells. Important differences in cells of nonregenerative froglets were observed, although uniciliated cells were found, the most abundant cells had multicilia and revealed extensive changes in the maturation and differentiation state. The majority of dividing cells in larvae corresponded to uniciliated cells at dorsal and lateral domains in a cervical-lumbar gradient, correlating with undifferentiated features. Neurons contacting the lumen of the central canal were detected in both stages and revealed extensive changes in the maturation and differentiation state. However, in froglets a very low proportion of cells incorporate 5-ethynyl-2'-deoxyuridine (EdU), associated with the differentiated profile and with the increase of multiciliated cells. Our work showed progressive changes in the cell types lining the central canal of Xenopus laevis spinal cord which are correlated with the regenerative capacities.


Asunto(s)
Metamorfosis Biológica , Médula Espinal/citología , Médula Espinal/fisiología , Xenopus laevis/anatomía & histología , Xenopus laevis/fisiología , Animales , Recuento de Células , Proliferación Celular , Cilios/ultraestructura , Desoxiuridina/análogos & derivados , Femenino , Larva , Masculino , Regeneración Nerviosa , Células-Madre Neurales , Neuroglía/fisiología , Neuroglía/ultraestructura , Médula Espinal/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA