Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Neurobiol Learn Mem ; 172: 107247, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32416137

RESUMEN

Spatial learning and memory enables individuals to orientate themselves in an external environment. Synaptic stimulation of dendritic spines on hippocampal place cells underlies adaptive cognitive performance, inducing plastic changes such as spinogenesis, pruning and structural interconversion. Such plastic changes are driven by complex molecular machinery that relies on several actin cytoskeleton-associated proteins (ACAP's), these interacting with actin filaments in the postsynaptic density to guide the conformational changes to spines in accordance with the synaptic information they receive. However, the specific dynamics of the plastic changes in spines driven by ACAP's are poorly understood. Adult rats exhibit efficient allocentric reference memory 30 days after training in a spatial learning paradigm in the Morris water maze. A Golgi study revealed this behavior to be associated with a reduction in both spine density and in mushroom spines, as well as a concomitant increase in thin spines. These changes were accompanied by the overexpression of mRNA encoding ß-actin, Spinophilin and Cortactin, whilst the expression of Profilin, α-actinin, Drebrin, Synaptopodin and Myosin decreased. By contrast, no changes were evident in Cofilin, Gelsolin and Arp2/3 mRNA. From this analysis, it appears that neither spinogenesis nor new mushroom spines are necessary for long-term spatial information retrieval, while thin spines could be potentiated to retrieve pre-learned spatial information. Further studies that focus on the signaling pathways and their related molecules may shed further light on the molecular dynamics of the plastic changes to dendritic spines that underlie cognitive performance, both under normal and pathological conditions.


Asunto(s)
Región CA1 Hipocampal/fisiología , Proteínas del Citoesqueleto/fisiología , Espinas Dendríticas/fisiología , Memoria a Largo Plazo/fisiología , Plasticidad Neuronal , Animales , Masculino , Ratas Sprague-Dawley , Aprendizaje Espacial/fisiología , Memoria Espacial/fisiología
2.
Histol Histopathol ; 39(4): 411-423, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37966087

RESUMEN

The morphophysiology of the nervous system changes and adapts in response to external environmental inputs and the experiences of individuals throughout their lives. Other changes in the organisms internal environment can also contribute to nervous system restructuring in the form of plastic changes that underlie its capacity to adapt to emerging psychophysiological conditions. These adaptive processes lead to subtle modifications of the organisms internal homeostasis which is closely related with the activity of chemical messengers, such as neurotransmitters and hormones. Hormones reach the brain through the bloodstream, where they activate specific receptors through which certain biochemical, physiological, and morphological changes take place in numerous regions. Fetal development, infancy, puberty, and adulthood are all periods of substantial hormone-mediated brain remodeling in both males and females. Adulthood, specifically, is associated with a broad range of life events, including reproductive cycles in both sexes, and pregnancy and menopause in women. Events of this kind occur concomitantly with eventual modifications in behavioral performance and, especially, in cognitive abilities like learning and memory that underlie, at least in part, plastic changes in the dendritic spines of the neuronal cells in cerebral areas involved in processing cognitive information. Estrogens form a family that consists of three molecules [17ß-estradiol (E2), estrone, estriol] which are deeply involved in regulating numerous bodily functions in different stages of the life-cycle, including the modulation of cognitive performance. This review addresses the effects of E2 on the dendritic spine-mediated synaptic organization of cognitive performance throughout the life span.


Asunto(s)
Espinas Dendríticas , Estradiol , Masculino , Humanos , Femenino , Estradiol/farmacología , Espinas Dendríticas/fisiología , Longevidad , Estrógenos/farmacología , Encéfalo , Plasticidad Neuronal/fisiología
3.
Pharmacol Biochem Behav ; 175: 116-122, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30267796

RESUMEN

Attention Deficit Hyperactivity Disorder (ADHD) causes impaired visuospatial working memory (VWM), which primarily maps to the prefrontal cortex. However, little is known about the synaptic processes underlying cognitive loss in ADHD, or those ultimately involved in the preventive effect observed through the clinical use of Atomoxetine (ATX). To investigate the plasticity underlying ADHD related cognitive loss, and that potentially involved in the preventive action of Atomoxetine, allocentric VWM was assessed, as well as the dendritic spine number and proportional density on pyramidal neurons in the prefrontal cerebral cortex layer III of neonatal 6-hydroxydopamine-lesioned rats. The effect of acute ATX treatment was also assessed at 28 days of age. 6-OHDA induced lesions produced increased motor activity and a loss of VWM, concomitant with a reduction in thin spine density. ATX administration reversed cognitive loss, in conjunction with a decrease in thin spines and an increase in mushroom spines. A reduction in the proportion of spines involved in learning in hyperactive animals could account for the loss in cognitive function observed. Considering thin spine density was also reduced after ATX administration, we hypothesized that the restoration in cognitive function recorded could be brought about by an increase in memory related mushroom spines.


Asunto(s)
Clorhidrato de Atomoxetina/farmacología , Memoria a Corto Plazo/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Corteza Prefrontal/efectos de los fármacos , Células Piramidales/efectos de los fármacos , Animales , Femenino , Masculino , Corteza Prefrontal/citología , Ratas , Ratas Sprague-Dawley
4.
Neurosci Lett ; 657: 27-31, 2017 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-28760460

RESUMEN

Rehabilitation is a process which favors recovery after brain damage involving motor systems, and neural plasticity is the only real resource the brain has for inducing neurobiological events in order to bring about re-adaptation. Rats were placed on a treadmill and made to walk, in different groups, at different velocities and with varying degrees of inclination. Plastic changes in the spines of the apical and basal dendrites of fifth-layer pyramidal neurons in the motor cortices of the rats were detected after study with the Golgi method. Numbers of dendritic spines increased in the three experimental groups, and thin, mushroom, stubby, wide, and branched spines increased or decreased in proportion depending on the motor demands made of each group. Along with the numerical increase of spines, the present findings provide evidence that dendritic spines' geometrical plasticity is involved in the differential performance of motor activity.


Asunto(s)
Espinas Dendríticas/fisiología , Actividad Motora/fisiología , Corteza Motora/fisiología , Plasticidad Neuronal/fisiología , Células Piramidales/fisiología , Animales , Masculino , Corteza Motora/citología , Células Piramidales/citología , Ratas , Ratas Sprague-Dawley , Tinción con Nitrato de Plata
5.
Arch Med Res ; 48(7): 609-615, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-29530339

RESUMEN

BACKGROUND: Spinal cord injury (SCI) is highly incapacitating, and the neurobiological factors involved in an eventual functional recovery remain uncertain. Plastic changes to dendritic spines are closely related with the functional modifications of behavior. AIM OF THE STUDY: To explore the plastic response of dendritic spines in motoneurons after SCI. METHODS: Female rats were assigned to either of three groups: Intact (no manipulations), Sham (T9 laminectomy), and SCI (T9 laminectomy and spinal cord contusion). RESULTS: Motor function according to a BBBscale was progressively recovered from 2 week through 8 week postinjury, reaching a plateau through week 16. Dendritic spine density was greater in SCI vs. control groups, rostral as well as caudal to the lesion, at 8 and 16 weeks postinjury. Thin and stubby/wide spines were more abundant at both locations and time points, whereas mushroom spines predominated at 2 and 4 months in rostral to the lesion. Filopodia and atypical structures resembling dendritic spines were observed. Synaptophysin expression was lower in SCI at the caudal portion at 8 weeks, and was higher at week 16. CONCLUSION: Spinogenesis in spinal motoneurons may be a crucial plastic response to favor spontaneous recovery after SCI.


Asunto(s)
Espinas Dendríticas/fisiología , Neuronas Motoras/fisiología , Plasticidad Neuronal , Traumatismos de la Médula Espinal/fisiopatología , Cicatrización de Heridas/fisiología , Animales , Femenino , Ratas , Ratas Long-Evans , Ratas Sprague-Dawley , Recuperación de la Función , Vértebras Torácicas
6.
Behav Brain Res ; 298(Pt B): 261-7, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26589803

RESUMEN

The prefrontal cortex participates in the rectification of information related to motor activity that favors motor learning. Dendritic spine plasticity is involved in the modifications of motor patterns that underlie both motor activity and motor learning. To study this association in more detail, adult male rats were trained over six days in an acrobatic motor learning paradigm and they were subjected to a behavioral evaluation on each day of training. Also, a Golgi-based morphological study was carried out to determine the spine density and the proportion of the different spine types. In the learning paradigm, the number of errors diminished as motor training progressed. Concomitantly, spine density increased on days 1 and 3 of training, particularly reflecting an increase in the proportion of thin (day 1), stubby (day 1) and branched (days 1, 2 and 5) spines. Conversely, mushroom spines were less prevalent than in the control rats on days 5 and 6, as were stubby spines on day 6, together suggesting that this plasticity might enhance motor learning. The increase in stubby spines on day 1 suggests a regulation of excitability related to the changes in synaptic input to the prefrontal cortex. The plasticity to thin spines observed during the first 3 days of training could be related to the active rectification induced by the information relayed to the prefrontal cortex -as the behavioral findings indeed showed-, which in turn could be linked to the lower proportion of mushroom and stubby spines seen in the last days of training.


Asunto(s)
Espinas Dendríticas/fisiología , Aprendizaje/fisiología , Actividad Motora/fisiología , Corteza Prefrontal/fisiología , Células Piramidales/fisiología , Animales , Masculino , Plasticidad Neuronal , Fotomicrografía , Corteza Prefrontal/citología , Células Piramidales/citología , Ratas Sprague-Dawley
7.
Restor Neurol Neurosci ; 33(5): 639-45, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25720541

RESUMEN

PURPOSE: The presynaptic stimulatory activity of parallel fibers on the dendritic spines of cerebellar Purkinje cells (PC) has a strong influence on the organization of motor learning. Motor learning has been shown to modify the synapses established on PC dendritic spines but the plastic changes of the different spine types, possibly underlying motor learning, have not been studied. METHODS: Adult male Sprague-Dawley rats were trained daily for 26 days using an acrobatic paradigm (AC), at the end of which dendritic spine density and the proportion of the different types of spines was assessed. RESULTS: The learning curves of AC rats reflected a robust decrease in the latency for resolution and in the errors committed during the first week of training, which subsequently stabilized until the end of training. Dendritic spine density was greater in these AC rats, reflected in a larger proportion of thin, mushroom and stubby spines. CONCLUSIONS: Since thin spines are associated with acquiring novel information whilst mushroom spines are associated with long-term information storage, there appears to be a strong relationship between AC motor learning and consolidation. The increase in stubby spines could be related to the regulation of excitatory stimulation underlying motor overactivity.


Asunto(s)
Espinas Dendríticas/fisiología , Aprendizaje/fisiología , Destreza Motora/fisiología , Plasticidad Neuronal/fisiología , Células de Purkinje/fisiología , Animales , Masculino , Fotomicrografía , Células de Purkinje/citología , Ratas Sprague-Dawley
8.
Neurosci Res ; 73(4): 321-7, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22609361

RESUMEN

Working memory is a cognitive ability chiefly organized by the prefrontal cortex. Working memory tests may be resolved based on allocentric or egocentric spatial strategies. Serotonergic neurotransmission is closely involved in working memory, but its role in spatial strategies for working memory performance is unknown. To address this issue, prefrontal serotonin depletion was induced to adult male rats, and three days after the behavioral expression of both allocentric and egocentric strategies were evaluated in the "Y" maze and in a crossed-arm maze, respectively. Serotonin depletion caused no effects on allocentric-related behavioral performance, but lesioned rats performed deficiently when the egocentric working memory was evaluated. These results suggest that serotonin may be more closely related with the organization of working memory that uses own movement-guided responses than with that involving the use of external visuospatial signals. Further neurochemical studies are needed to elucidate possible interactions between serotonergic activity and other neurotransmitter systems in the organization of working memory-related allocentric and egocentric strategies.


Asunto(s)
Memoria a Corto Plazo/fisiología , Corteza Prefrontal/metabolismo , Serotonina/metabolismo , Animales , Cromatografía Líquida de Alta Presión , Masculino , Aprendizaje por Laberinto/fisiología , Ratas , Conducta Espacial/fisiología
9.
Brain Res ; 1470: 1-10, 2012 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-22750586

RESUMEN

Cognitive impairment or its recovery has been associated with the absence or reestablishment of estrogenic actions in the central nervous system of female experimental animals or women. It has been proposed that these cognitive phenomena are related to estrogen-mediated modulatory activity of synaptic transmission in brain structures involved in cognitive functions. In the present work a morphological study was conducted in adult female ovariectomized rats to evaluate estradiol-dependent dendritic spine sprouting in hippocampal pyramidal neurons, and changes in the presynaptic marker synaptophysin. Three or ten days after estradiol treatment (10 µg/day, twice) in the ovariectomized rats, a significant increase of synaptophysin was observed, which was coincident with a significant higher numerical density of thin (22%), stubby (36%), mushroom (47%) and double spines (125%), at day 3, without significant changes of spine density at day 10, after treatment. These results may be interpreted as evidence of pre- and postsynaptic plastic events that may be involved in the modulation of cognitive-related behavioral performance after estrogen replacement therapy.


Asunto(s)
Región CA1 Hipocampal/citología , Espinas Dendríticas/efectos de los fármacos , Estradiol/farmacología , Estrógenos/farmacología , Células Piramidales/ultraestructura , Análisis de Varianza , Animales , Región CA1 Hipocampal/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Ovariectomía , Células Piramidales/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Tinción con Nitrato de Plata , Sinaptofisina/metabolismo
10.
Neurosci Lett ; 491(3): 216-20, 2011 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-21262320

RESUMEN

The simple cerebellar lobule is involved in several neuromotor processes and it is activated during guided exercise. Although guided exercises are essential for motor rehabilitation, the plastic events that occur in the simple cerebellar lobule during motor training remain unknown. In this study, normal adult rats were intensely trained on a motorized treadmill during a period of four weeks (IT group) varying both the velocity and the slope of the moving belt, and they were compared to a mildly trained (MC) group and an intact control group (IC). Dendritic spine density and proportions of the different spine types on Purkinje cells was assessed in the cerebellar simple lobule, as was drebrin A expression. Both dendritic spine density and drebrin expression increased in the MC and IT groups. Stubby spines were more abundant in the MC animals, while there was an increase in both stubby and wide spines in IT rats. In addition, mushroom spines were more numerous in the IT group. Increases in stubby and wide spines could be related to regulation of the excitability in Purkinje cells due to the motor training regime experienced by the MC and IT rats. Moreover, the observed increase in mushroom spines in the IT group could be related with the motor adjustments imposed by training.


Asunto(s)
Espinas Dendríticas/ultraestructura , Plasticidad Neuronal/fisiología , Condicionamiento Físico Animal/fisiología , Células de Purkinje/ultraestructura , Animales , Western Blotting , Espinas Dendríticas/metabolismo , Masculino , Neuropéptidos/biosíntesis , Células de Purkinje/metabolismo , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA