Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 24(20)2019 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-31652614

RESUMEN

Nicotinic acetylcholine receptors (nAChRs), serotonin transporters (SERT) and dopamine transporters (DAT) represent targets for the development of novel nicotinic derivatives acting as multiligands associated with different health conditions, such as depressive, anxiety and addiction disorders. In the present work, a series of functionalized esters structurally related to acetylcholine and nicotine were synthesized and pharmacologically assayed with respect to these targets. The synthesized compounds were studied in radioligand binding assays at α4ß2 nAChR, h-SERT and h-DAT. SERT experiments showed not radioligand [3H]-paroxetine displacement, but rather an increase in the radioligand binding percentage at the central binding site was observed. Compound 20 showed Ki values of 1.008 ± 0.230 µM for h-DAT and 0.031 ± 0.006 µM for α4ß2 nAChR, and [3H]-paroxetine binding of 191.50% in h-SERT displacement studies, being the only compound displaying triple affinity. Compound 21 displayed Ki values of 0.113 ± 0.037 µM for α4ß2 nAChR and 0.075 ± 0.009 µM for h-DAT acting as a dual ligand. Molecular docking studies on homology models of α4ß2 nAChR, h-DAT and h-SERT suggested potential interactions among the compounds and agonist binding site at the α4/ß2 subunit interfaces of α4ß2 nAChR, central binding site of h-DAT and allosteric modulator effect in h-SERT.


Asunto(s)
Acetilcolina/análogos & derivados , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/química , Nicotina/análogos & derivados , Receptores Nicotínicos/química , Proteínas de Transporte de Serotonina en la Membrana Plasmática/química , Acetilcolina/agonistas , Acetilcolina/síntesis química , Acetilcolina/química , Regulación Alostérica , Sitios de Unión , Dopamina/química , Agonistas de Dopamina/química , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/agonistas , Ésteres/química , Células HEK293 , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Nicotina/agonistas , Nicotina/síntesis química , Nicotina/química , Agonistas Nicotínicos/química , Pirrolidinas/química , Ensayo de Unión Radioligante , Proteínas de Transporte de Serotonina en la Membrana Plasmática/agonistas , Relación Estructura-Actividad
2.
Molecules ; 24(15)2019 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-31344816

RESUMEN

Neuronal α4ß2 nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels (LGIC) that have been implicated in nicotine addiction, reward, cognition, pain disorders, anxiety, and depression. Nicotine has been widely used as a template for the synthesis of ligands that prefer α4ß2 nAChRs subtypes. The most important therapeutic use for α4ß2 nAChRs is as replacement therapy for smoking cessation and withdrawal and the most successful therapeutic ligands are partial agonists. In this case, we use the N-methylpyrrolidine moiety of nicotine to design and synthesize new α4ß2 nicotinic derivatives, coupling the pyrrolidine moiety to an aromatic group by introducing an ether-bonded functionality. Meta-substituted phenolic derivatives were used for these goals. Radioligand binding assays were performed on clonal cell lines of hα4ß2 nAChR and two electrode voltage-clamp experiments were used for functional assays. Molecular docking was performed in the open state of the nAChR in order to rationalize the agonist activity shown by our compounds.


Asunto(s)
Nicotina/química , Nicotina/farmacología , Agonistas Nicotínicos/química , Agonistas Nicotínicos/farmacología , Receptores Nicotínicos/química , Unión Competitiva , Relación Dosis-Respuesta a Droga , Humanos , Cinética , Conformación Molecular , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Estructura Molecular , Nicotina/análogos & derivados , Unión Proteica , Relación Estructura-Actividad
3.
Bioorg Med Chem ; 21(10): 2687-94, 2013 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-23561269

RESUMEN

Nicotine is an agonist of nicotinic acetylcholine receptors (nAChRs) that has been extensively used as a template for the synthesis of α4ß2-preferring nAChRs. Here, we used the N-methyl-pyrrolidine moiety of nicotine to design and synthesise novel α4ß2-preferring neonicotinic ligands. We increased the distance between the basic nitrogen and aromatic group of nicotine by introducing an ester functionality that also mimics acetylcholine (Fig. 2). Additionally, we introduced a benzyloxy group linked to the benzoyl moiety. Although the neonicotinic compounds fully inhibited binding of both [α-(125)I]bungarotoxin to human α7 nAChRs and [(3)H]cytisine to human α4ß2 nAChRs, they were markedly more potent at displacing radioligand binding to human α4ß2 nAChRs than to α7 nAChRs. Functional assays showed that the neonicotinic compounds behave as antagonists at α4ß2 and α4ß2α5 nAChRs. Substitutions on the aromatic ring of the compounds produced compounds that displayed marked selectivity for α4ß2 or α4ß2α5 nAChRs. Docking of the compounds on homology models of the agonist binding site at the α4/ß2 subunit interfaces of α4ß2 nAChRs suggested the compounds inhibit function of this nAChR type by binding the agonist binding site.


Asunto(s)
Agonistas Nicotínicos/química , Agonistas Nicotínicos/farmacología , Receptores Nicotínicos/metabolismo , Humanos , Receptores Nicotínicos/química , Relación Estructura-Actividad
4.
Biomedicines ; 10(7)2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35884787

RESUMEN

Alcoholism is a worldwide public health problem with high economic cost and which affects health and social behavior. It is estimated that alcoholism kills 3 million people globally, while in Chile it is responsible for around 9 thousand deaths per year. Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels expressed in the central nervous system, and they were suggested to modulate the ethanol mechanism involved in abuse and dependence. Previous work demonstrated a short-term treatment with UFR2709, a nAChRs antagonist, which reduced ethanol intake using a two-bottle free-choice paradigm in University of Chile bibulous (UChB) rats. Here, we present evidence of the UFR2709 efficacy in reducing the acquisition and long-term ethanol consumption. Our results show that UFR2709 (2.5 mg/kg i.p.) reduces the seek behavior and ethanol intake, even when the drug administration was stopped, and induced a reduction in the overall ethanol intake by around 55%. Using naïve UChB bibulous rats, we demonstrate that UFR2709 could delay and reduce the genetically adaptive impulse to seek and drink ethanol and prevent its excessive intake.

5.
Front Pharmacol ; 10: 1429, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31849674

RESUMEN

Brain nicotinic acetylcholine receptors (nAChRs), a heterogeneous family of pentameric acetylcholine-gated cation channels, have been suggested as molecular targets for the treatment of alcohol abuse and dependence. Here, we examined the effect of the competitive nAChR antagonist UFR2709 on the alcohol consumption of high-alcohol-drinking UChB rats. UChB rats were given free access to ethanol for 24-h periods in a two-bottle free choice paradigm and their ethanol and water intake were measured. The animals were i.p. injected daily for 17 days with a 10, 5, 2.5, or 1 mg/kg dose of UFR2709. Potential confounding motor effects of UFR2709 were assessed by examining the locomotor activity of animals administered the highest dose of UR2709 tested (10 mg/kg i.p.). UFR2709 reduced ethanol consumption and ethanol preference and increased water consumption in a dose-dependent manner. The most effective dose of UFR2709 was 2.5 mg/kg, which induced a 56% reduction in alcohol consumption. Administration of UFR2709 did not affect the weight or locomotor activity of the rats, suggesting that its effects on alcohol consumption and preference were mediated by specific nAChRs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA