Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 81(7): 1367-1369, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33798413

RESUMEN

Mutations in ataxia telangiectasia mutated (ATM) kinase lead to cerebellar neurodegeneration. In this issue of Molecular Cell, Lee et al. (2021) revealed how transcription-induced reactive oxygen species and DNA-RNA hybrids activate PARP enzymes, generating the nucleic acid poly-ADP-ribose, which promotes the accumulation of protein aggregates in A-T-like disorders.


Asunto(s)
Ataxia Telangiectasia , Ácidos Nucleicos , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Humanos , Poli(ADP-Ribosa) Polimerasa-1 , Poli ADP Ribosilación , Poli(ADP-Ribosa) Polimerasas/metabolismo , Agregado de Proteínas , Proteostasis , Proteínas Supresoras de Tumor/genética
2.
Mol Cell ; 80(5): 862-875.e6, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33275888

RESUMEN

The anti-tumor potency of poly(ADP-ribose) polymerase (PARP) inhibitors (PARPis) has been linked to trapping of PARP1 on damaged chromatin. However, little is known about their impact on PARP2, an isoform with overlapping functions at DNA lesions. Whether the release of PARP1/2 from DNA lesions is actively catalyzed by molecular machines is also not known. We found that PARPis robustly trap PARP2 and that the helicase ALC1 (CHD1L) is strictly required for PARP2 release. Catalytic inactivation of ALC1 quantitatively traps PARP2 but not PARP1. ALC1 manipulation impacts the response to single-strand DNA breaks through PARP2 trapping, potentiates PARPi-induced cancer cell killing, and mediates synthetic lethality upon BRCA deficiency. The chromatin remodeler ALC1 actively drives PARP2 turnover from DNA lesions, and PARP2 contributes to the cellular responses of PARPi. This suggests that disrupting the ATP-fueled remodeling forces of ALC1 might enable therapies that selectively target the DNA repair functions of PARPs in cancer.


Asunto(s)
Roturas del ADN de Cadena Simple , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Neoplasias/enzimología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Línea Celular Tumoral , ADN Helicasas/genética , Proteínas de Unión al ADN/genética , Humanos , Neoplasias/genética , Neoplasias/patología , Poli(ADP-Ribosa) Polimerasa-1/genética , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli(ADP-Ribosa) Polimerasas/genética , Proteínas Proto-Oncogénicas/genética
3.
Nat Commun ; 13(1): 4762, 2022 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-35963869

RESUMEN

Cells employ global genome nucleotide excision repair (GGR) to eliminate a broad spectrum of DNA lesions, including those induced by UV light. The lesion-recognition factor XPC initiates repair of helix-destabilizing DNA lesions, but binds poorly to lesions such as CPDs that do not destabilize DNA. How difficult-to-repair lesions are detected in chromatin is unknown. Here, we identify the poly-(ADP-ribose) polymerases PARP1 and PARP2 as constitutive interactors of XPC. Their interaction results in the XPC-stimulated synthesis of poly-(ADP-ribose) (PAR) by PARP1 at UV lesions, which in turn enables the recruitment and activation of the PAR-regulated chromatin remodeler ALC1. PARP2, on the other hand, modulates the retention of ALC1 at DNA damage sites. Notably, ALC1 mediates chromatin expansion at UV-induced DNA lesions, leading to the timely clearing of CPD lesions. Thus, we reveal how chromatin containing difficult-to-repair DNA lesions is primed for repair, providing insight into mechanisms of chromatin plasticity during GGR.


Asunto(s)
Cromatina , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Cromatina/genética , ADN/genética , ADN/metabolismo , Daño del ADN , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Poli Adenosina Difosfato Ribosa/metabolismo
4.
Arthritis Res Ther ; 20(1): 212, 2018 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-30236152

RESUMEN

BACKGROUND: Despite recent improvements in the treatment of rheumatoid arthritis (RA), an insufficient treatment response and the development of treatment resistance in many patients illustrates the need for new therapeutic strategies. Chronic synovial inflammation could be suppressed by targeting RA synovial fibroblast (RASF) activation by, for example, interleukin (IL)-17A-producing CCR6+ T helper memory (memTh) cells. Here, we modulated this interaction by combining the active vitamin D metabolite 1,25(OH)2D3 with dexamethasone (DEX) and explored the potential therapeutic applications. METHODS: CCR6+ memTh cells from peripheral blood mononuclear cells (PBMCs) of healthy donors or treatment-naive early RA patients were cultured alone or with RASF from established RA patients for 3 days and treated with or without 1,25(OH)2D3, DEX, or etanercept. Treatment effects were assessed using enzyme-linked immunosorbent assay (ELISA) and flow cytometry. RESULTS: 1,25(OH)2D3, and to lesser extent DEX, reduced production of the pro-inflammatory cytokines IL-17A, IL-22, and interferon (IFN)γ in CCR6+ memTh cells. Tumor necrosis factor (TNF)α was only inhibited by the combination of 1,25(OH)2D3 and DEX. In contrast, DEX was the strongest inhibitor of IL-6, IL-8, and tissue-destructive enzymes in RASF. As a result, 1,25(OH)2D3 and DEX additively inhibited inflammatory mediators in CCR6+ memTh-RASF cocultures. Interestingly, low doses of mainly DEX, but also 1,25(OH)2D3, combined with etanercept better suppressed synovial inflammation in this coculture model compared with etanercept alone. CONCLUSION: This study suggests that 1,25(OH)2D3 and DEX additively inhibit synovial inflammation through targeting predominantly CCR6+ memTh cells and RASF, respectively. Furthermore, low doses of DEX and 1,25(OH)2D3 enhance the effect of TNFα blockade in inhibiting RASF activation, thus providing a basis to improve RA treatment.


Asunto(s)
Calcitriol/administración & dosificación , Dexametasona/administración & dosificación , Receptores CCR6/biosíntesis , Membrana Sinovial/metabolismo , Linfocitos T Colaboradores-Inductores/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Técnicas de Cocultivo , Sinergismo Farmacológico , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Humanos , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/metabolismo , Membrana Sinovial/efectos de los fármacos , Linfocitos T Colaboradores-Inductores/efectos de los fármacos , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA