RESUMEN
Background Currently, no tool exists for risk stratification in patients undergoing segmentectomy for non-small cell lung cancer (NSCLC). Purpose To develop and validate a deep learning (DL) prognostic model using preoperative CT scans and clinical and radiologic information for risk stratification in patients with clinical stage IA NSCLC undergoing segmentectomy. Materials and Methods In this single-center retrospective study, transfer learning of a pretrained model was performed for survival prediction in patients with clinical stage IA NSCLC who underwent lobectomy from January 2008 to March 2017. The internal set was divided into training, validation, and testing sets based on the assignments from the pretraining set. The model was tested on an independent test set of patients with clinical stage IA NSCLC who underwent segmentectomy from January 2010 to December 2017. Its prognostic performance was analyzed using the time-dependent area under the receiver operating characteristic curve (AUC), sensitivity, and specificity for freedom from recurrence (FFR) at 2 and 4 years and lung cancer-specific survival and overall survival at 4 and 6 years. The model sensitivity and specificity were compared with those of the Japan Clinical Oncology Group (JCOG) eligibility criteria for sublobar resection. Results The pretraining set included 1756 patients. Transfer learning was performed in an internal set of 730 patients (median age, 63 years [IQR, 56-70 years]; 366 male), and the segmentectomy test set included 222 patients (median age, 65 years [IQR, 58-71 years]; 114 male). The model performance for 2-year FFR was as follows: AUC, 0.86 (95% CI: 0.76, 0.96); sensitivity, 87.4% (7.17 of 8.21 patients; 95% CI: 59.4, 100); and specificity, 66.7% (136 of 204 patients; 95% CI: 60.2, 72.8). The model showed higher sensitivity for FFR than the JCOG criteria (87.4% vs 37.6% [3.08 of 8.21 patients], P = .02), with similar specificity. Conclusion The CT-based DL model identified patients at high risk among those with clinical stage IA NSCLC who underwent segmentectomy, outperforming the JCOG criteria. © RSNA, 2024 Supplemental material is available for this article.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Masculino , Persona de Mediana Edad , Anciano , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Carcinoma de Pulmón de Células no Pequeñas/cirugía , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/cirugía , Neumonectomía , Pronóstico , Estudios Retrospectivos , Tomografía Computarizada por Rayos XRESUMEN
Members of the Fleischner Society have compiled a glossary of terms for thoracic imaging that replaces previous glossaries published in 1984, 1996, and 2008, respectively. The impetus to update the previous version arose from multiple considerations. These include an awareness that new terms and concepts have emerged, others have become obsolete, and the usage of some terms has either changed or become inconsistent to a degree that warranted a new definition. This latest glossary is focused on terms of clinical importance and on those whose meaning may be perceived as vague or ambiguous. As with previous versions, the aim of the present glossary is to establish standardization of terminology for thoracic radiology and, thereby, to facilitate communications between radiologists and clinicians. Moreover, the present glossary aims to contribute to a more stringent use of terminology, increasingly required for structured reporting and accurate searches in large databases. Compared with the previous version, the number of images (chest radiography and CT) in the current version has substantially increased. The authors hope that this will enhance its educational and practical value. All definitions and images are hyperlinked throughout the text. Click on each figure callout to view corresponding image. © RSNA, 2024 Supplemental material is available for this article. See also the editorials by Bhalla and Powell in this issue.
Asunto(s)
Comunicación , Diagnóstico por Imagen , Humanos , Bases de Datos Factuales , RadiólogosRESUMEN
BACKGROUND: The prognostic role of changes in body fat in patients with idiopathic pulmonary fibrosis (IPF) remains underexplored. We investigated the association between changes in body fat during the first year post-diagnosis and outcomes in patients with IPF. METHODS: This single-center, retrospective study included IPF patients with chest CT scan and pulmonary function test (PFT) at diagnosis and a one-year follow-up between January 2010 and December 2020. The fat area (cm2, sum of subcutaneous and visceral fat) and muscle area (cm2) at the T12-L1 level were obtained from chest CT images using a fully automatic deep learning-based software. Changes in the body composition were dichotomized using thresholds dividing the lowest quartile and others, respectively (fat area: -52.3 cm2, muscle area: -7.4 cm2). Multivariable Cox regression analyses adjusted for PFT result and IPF extent on CT images and the log-rank test were performed to assess the association between the fat area change during the first year post-diagnosis and the composite outcome of death or lung transplantation. RESULTS: In total, 307 IPF patients (69.3 ± 8.1 years; 238 men) were included. During the first year post-diagnosis, fat area, muscle area, and body mass index (BMI) changed by -15.4 cm2, -1 cm2, and - 0.4 kg/m2, respectively. During a median follow-up of 47 months, 146 patients had the composite outcome (47.6%). In Cox regression analyses, a change in the fat area < -52.3 cm2 was associated with composite outcome incidence in models adjusted with baseline clinical variables (hazard ratio [HR], 1.566, P = .022; HR, 1.503, P = .036 in a model including gender, age, and physiology [GAP] index). This prognostic value was consistent when adjusted with one-year changes in clinical variables (HR, 1.495; P = .030). However, the change in BMI during the first year was not a significant prognostic factor (P = .941). Patients with a change in fat area exceeding this threshold experienced the composite outcome more frequently than their counterparts (58.4% vs. 43.9%; P = .007). CONCLUSION: A ≥ 52.3 cm2 decrease in fat area, automatically measured using deep learning technique, at T12-L1 in one year post-diagnosis was an independent poor prognostic factor in IPF patients.
Asunto(s)
Fibrosis Pulmonar Idiopática , Masculino , Humanos , Estudios Retrospectivos , Fibrosis Pulmonar Idiopática/diagnóstico por imagen , Pronóstico , Tejido Adiposo , Composición Corporal , Tomografía Computarizada por Rayos XRESUMEN
OBJECTIVES: The prognostic value of ground-glass opacity at preoperative chest CT scans in early-stage lung adenocarcinomas is a matter of debate. We aimed to clarify the existing evidence through a single-center, retrospective cohort study and to quantitatively summarize the body of literature by conducting a meta-analysis. METHODS: In a retrospective cohort study, patients with clinical stage I lung adenocarcinoma were identified, and the prognostic value of ground-glass opacity was analyzed using multivariable Cox regression. Commercial artificial intelligence software was adopted as the second reader for the presence of ground-glass opacity. The primary end points were freedom from recurrence (FFR) and lung cancer-specific survival (LCSS). In a meta-analysis, we systematically searched Embase and OVID-MEDLINE up to December 30, 2021, for the studies based on the eighth-edition staging system. The pooled hazard ratios (HRs) of solid nodules (i.e., absence of ground-glass opacity) for various end points were calculated with a multi-level random effects model. RESULTS: In a cohort of 612 patients, solid nodules were associated with worse outcomes for FFR (adjusted HR, 1.98; 95% CI: 1.17-3.51; p = 0.01) and LCSS (adjusted HR, 1.937; 95% CI: 1.002-4.065; p = 0.049). The artificial intelligence assessment and multiple sensitivity analyses revealed consistent results. The meta-analysis included 13 studies with 12,080 patients. The pooled HR of solid nodules was 2.13 (95% CI: 1.69-2.67; I2 = 30.4%) for overall survival, 2.45 (95% CI: 1.52-3.95; I2 = 0.0%) for FFR, and 2.50 (95% CI: 1.28-4.91; I2 = 30.6%) for recurrence-free survival. CONCLUSIONS: The absence of ground-glass opacity in early-stage lung adenocarcinomas is associated with worse postoperative survival. CLINICAL RELEVANCE STATEMENT: Early-stage lung adenocarcinomas manifesting as solid nodules at preoperative chest CT, which indicates the absence of ground-glass opacity, were associated with poor postoperative survival. There is room for improvement of the clinical T categorization in the next edition staging system. KEY POINTS: ⢠In a retrospective study of 612 patients with stage I lung adenocarcinoma, solid nodules were associated with shorter freedom from recurrence (adjusted hazard ratio [HR], 1.98; p = 0.01) and lung cancer-specific survival (adjusted HR, 1.937; p = 0.049). ⢠Artificial intelligence-assessed solid nodules also showed worse prognosis (adjusted HR for freedom from recurrence, 1.94 [p = 0.01]; adjusted HR for lung cancer-specific survival, 1.93 [p = 0.04]). ⢠In meta-analyses, the solid nodules were associated with shorter freedom from recurrence (HR, 2.45) and shorter overall survival (HR, 2.13).
Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Pronóstico , Estudios Retrospectivos , Inteligencia Artificial , Estadificación de Neoplasias , Adenocarcinoma del Pulmón/patología , Neoplasias Pulmonares/patología , Tomografía Computarizada por Rayos X/métodosRESUMEN
OBJECTIVES: To develop and validate a deep learning-based prognostic model in patients with idiopathic pulmonary fibrosis (IPF) using chest radiographs. METHODS: To develop a deep learning-based prognostic model using chest radiographs (DLPM), the patients diagnosed with IPF during 2011-2021 were retrospectively collected and were divided into training (n = 1007), validation (n = 117), and internal test (n = 187) datasets. Up to 10 consecutive radiographs were included for each patient. For external testing, three cohorts from independent institutions were collected (n = 152, 141, and 207). The discrimination performance of DLPM was evaluated using areas under the time-dependent receiver operating characteristic curves (TD-AUCs) for 3-year survival and compared with that of forced vital capacity (FVC). Multivariable Cox regression was performed to investigate whether the DLPM was an independent prognostic factor from FVC. We devised a modified gender-age-physiology (GAP) index (GAP-CR), by replacing DLCO with DLPM. RESULTS: DLPM showed similar-to-higher performance at predicting 3-year survival than FVC in three external test cohorts (TD-AUC: 0.83 [95% CI: 0.76-0.90] vs. 0.68 [0.59-0.77], p < 0.001; 0.76 [0.68-0.85] vs. 0.70 [0.60-0.80], p = 0.21; 0.79 [0.72-0.86] vs. 0.76 [0.69-0.83], p = 0.41). DLPM worked as an independent prognostic factor from FVC in all three cohorts (ps < 0.001). The GAP-CR index showed a higher 3-year TD-AUC than the original GAP index in two of the three external test cohorts (TD-AUC: 0.85 [0.80-0.91] vs. 0.79 [0.72-0.86], p = 0.02; 0.72 [0.64-0.80] vs. 0.69 [0.61-0.78], p = 0.56; 0.76 [0.69-0.83] vs. 0.68 [0.60-0.76], p = 0.01). CONCLUSIONS: A deep learning model successfully predicted survival in patients with IPF from chest radiographs, comparable to and independent of FVC. CLINICAL RELEVANCE STATEMENT: Deep learning-based prognostication from chest radiographs offers comparable-to-higher prognostic performance than forced vital capacity. KEY POINTS: ⢠A deep learning-based prognostic model for idiopathic pulmonary fibrosis was developed using 6063 radiographs. ⢠The prognostic performance of the model was comparable-to-higher than forced vital capacity, and was independent from FVC in all three external test cohorts. ⢠A modified gender-age-physiology index replacing diffusing capacity for carbon monoxide with the deep learning model showed higher performance than the original index in two external test cohorts.
Asunto(s)
Aprendizaje Profundo , Fibrosis Pulmonar Idiopática , Radiografía Torácica , Humanos , Fibrosis Pulmonar Idiopática/diagnóstico por imagen , Fibrosis Pulmonar Idiopática/mortalidad , Masculino , Femenino , Pronóstico , Estudios Retrospectivos , Anciano , Radiografía Torácica/métodos , Persona de Mediana Edad , Capacidad VitalRESUMEN
OBJECTIVES: To analyze the diagnostic performance and prognostic value of CT-defined visceral pleural invasion (CT-VPI) in early-stage lung adenocarcinomas. METHODS: Among patients with clinical stage I lung adenocarcinomas, half of patients were randomly selected for a diagnostic study, in which five thoracic radiologists determined the presence of CT-VPI. Probabilities for CT-VPI were obtained using deep learning (DL). Areas under the receiver operating characteristic curve (AUCs) and binary diagnostic measures were calculated and compared. Inter-rater agreement was assessed. For all patients, the prognostic value of CT-VPI by two radiologists and DL (using high-sensitivity and high-specificity cutoffs) was investigated using Cox regression. RESULTS: In 681 patients (median age, 65 years [interquartile range, 58-71]; 382 women), pathologic VPI was positive in 130 patients. For the diagnostic study (n = 339), the pooled AUC of five radiologists was similar to that of DL (0.78 vs. 0.79; p = 0.76). The binary diagnostic performance of radiologists was variable (sensitivity, 45.3-71.9%; specificity, 71.6-88.7%). Inter-rater agreement was moderate (weighted Fleiss κ, 0.51; 95%CI: 0.43-0.55). For overall survival (n = 680), CT-VPI by radiologists (adjusted hazard ratio [HR], 1.27 and 0.99; 95%CI: 0.84-1.92 and 0.63-1.56; p = 0.26 and 0.97) or DL (HR, 1.44 and 1.06; 95%CI: 0.86-2.42 and 0.67-1.68; p = 0.17 and 0.80) was not prognostic. CT-VPI by an attending radiologist was prognostic only in radiologically solid tumors (HR, 1.82; 95%CI: 1.07-3.07; p = 0.03). CONCLUSION: The diagnostic performance and prognostic value of CT-VPI are limited in clinical stage I lung adenocarcinomas. This feature may be applied for radiologically solid tumors, but substantial reader variability should be overcome. CLINICAL RELEVANCE STATEMENT: Although the diagnostic performance and prognostic value of CT-VPI are limited in clinical stage I lung adenocarcinomas, this parameter may be applied for radiologically solid tumors with appropriate caution regarding inter-reader variability. KEY POINTS: ⢠Use of CT-defined visceral pleural invasion in clinical staging should be cautious, because prognostic value of CT-defined visceral pleural invasion remains unexplored. ⢠Diagnostic performance and prognostic value of CT-defined visceral pleural invasion varied among radiologists and deep learning. ⢠Role of CT-defined visceral pleural invasion in clinical staging may be limited to radiologically solid tumors.
Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Anciano , Femenino , Humanos , Adenocarcinoma del Pulmón/diagnóstico por imagen , Adenocarcinoma del Pulmón/patología , Neoplasias Pulmonares/patología , Estadificación de Neoplasias , Pleura/diagnóstico por imagen , Pleura/patología , Pronóstico , Tomografía Computarizada por Rayos X , Masculino , Persona de Mediana EdadRESUMEN
BACKGROUND. Timely and accurate interpretation of chest radiographs obtained to evaluate endotracheal tube (ETT) position is important for facilitating prompt adjustment if needed. OBJECTIVE. The purpose of our study was to evaluate the performance of a deep learning (DL)-based artificial intelligence (AI) system for detecting ETT presence and position on chest radiographs in three patient samples from two different institutions. METHODS. This retrospective study included 539 chest radiographs obtained immediately after ETT insertion from January 1 to March 31, 2020, in 505 patients (293 men, 212 women; mean age, 63 years) from institution A (sample A); 637 chest radiographs obtained from January 1 to January 3, 2020, in 302 patients (157 men, 145 women; mean age, 66 years) in the ICU (with or without an ETT) from institution A (sample B); and 546 chest radiographs obtained from January 1 to January 20, 2020, in 83 patients (54 men, 29 women; mean age, 70 years) in the ICU (with or without an ETT) from institution B (sample C). A commercial DL-based AI system was used to identify ETT presence and measure ETT tip-to-carina distance (TCD). The reference standard for proper ETT position was TCD between greater than 3 cm and less than 7 cm, determined by human readers. Critical ETT position was separately defined as ETT tip below the carina or TCD of 1 cm or less. ROC analysis was performed. RESULTS. AI had sensitivity and specificity for identification of ETT presence of 100.0% and 98.7% (sample B) and 99.2% and 94.5% (sample C). AI had sensitivity and specificity for identification of improper ETT position of 72.5% and 92.0% (sample A), 78.9% and 100.0% (sample B), and 83.7% and 99.1% (sample C). At a threshold y-axis TCD of 2 cm or less, AI had sensitivity and specificity for critical ETT position of 100.0% and 96.7% (sample A), 100.0% and 100.0% (sample B), and 100.0% and 99.2% (sample C). CONCLUSION. AI identified improperly positioned ETTs on chest radiographs obtained after ETT insertion as well as on chest radiographs obtained of patients in the ICU at two institutions. CLINICAL IMPACT. Automated AI identification of improper ETT position on chest radiographs may allow earlier repositioning and thereby reduce complications.
Asunto(s)
Inteligencia Artificial , Intubación Intratraqueal , Masculino , Humanos , Femenino , Persona de Mediana Edad , Anciano , Estudios Retrospectivos , Intubación Intratraqueal/métodos , Tráquea , RadiografíaRESUMEN
BACKGROUND. Changes in lung parenchyma elasticity in usual interstitial pneumonia (UIP) may increase the risk for complications after percutaneous transthoracic needle biopsy (PTNB) of the lung. OBJECTIVE. The purpose of this article was to investigate the association of UIP findings on CT with complications after PTNB, including pneumothorax, pneumothorax requiring chest tube insertion, and hemoptysis. METHODS. This retrospective single-center study included 4187 patients (mean age, 63.8 ± 11.9 [SD] years; 2513 men, 1674 women) who underwent PTNB between January 2010 and December 2015. Patients were categorized into a UIP group and non-UIP group by review of preprocedural CT. In the UIP group, procedural CT images were reviewed to assess for traversal of UIP findings by needle. Multivariable logistic regression analyses were performed to identify associations between the UIP group and needle traversal with postbiopsy complications, controlling for a range of patient, lesion, and procedural characteristics. RESULTS. The UIP and non-UIP groups included 148 and 4039 patients, respectively; in the UIP group, traversal of UIP findings by needle was observed in 53 patients and not observed in 95 patients. The UIP group, in comparison with the non-UIP group, had a higher frequency of pneumothorax (35.1% vs 17.9%, p < .001) and pneumothorax requiring chest tube placement (6.1% vs 1.5%, p = .001) and lower frequency of hemoptysis (2.0% vs 6.1%, p = .03). In multivariable analyses, the UIP group with traversal of UIP findings by needle, relative to the non-UIP group, showed independent associations with pneumothorax (OR, 5.25; 95% CI, 2.94-9.37; p < .001) and pneumothorax requiring chest tube placement (OR, 9.55; 95% CI, 3.74-24.38; p < .001). The UIP group without traversal of UIP findings by needle, relative to the non-UIP group, was not independently associated with pneumothorax (OR, 1.18; 95% CI, 0.71-1.97; p = .51) or pneumothorax requiring chest tube placement (OR, 1.08; 95% CI, 0.25-4.72; p = .92). The UIP group, with or without traversal of UIP findings by needle, was not independently associated with hemoptysis. No patient experienced air embolism or procedure-related death. CONCLUSION. Needle traversal of UIP findings is a risk factor for pneumothorax and pneumothorax requiring chest tube placement after PTNB. CLINICAL IMPACT. When performing PTNB in patients with UIP, radiologists should plan a needle trajectory that does not traverse UIP findings, when possible.
Asunto(s)
Fibrosis Pulmonar Idiopática , Neoplasias Pulmonares , Neumotórax , Masculino , Humanos , Femenino , Persona de Mediana Edad , Anciano , Neumotórax/etiología , Hemoptisis/etiología , Estudios Retrospectivos , Tomografía Computarizada por Rayos X/métodos , Biopsia Guiada por Imagen/efectos adversos , Biopsia Guiada por Imagen/métodos , Radiografía Intervencional/métodos , Pulmón/diagnóstico por imagen , Pulmón/patología , Biopsia con Aguja/efectos adversos , Biopsia con Aguja/métodos , Neoplasias Pulmonares/patología , Fibrosis Pulmonar Idiopática/patología , Factores de RiesgoRESUMEN
BACKGROUND: Whether antimicrobial treatment improves long-term survival in patients with Mycobacterium avium complex pulmonary disease (MAC-PD) is unclear. METHODS: We analyzed survival in patients aged ≥18 years who were treated for MAC-PD at a tertiary referral center in South Korea between 1 January 2009 and 31 December 2020. Treatment exposure was divided into 4 time intervals: <6, ≥6 to <12, ≥12 to <18, and ≥18 months. Time-varying multivariable Cox proportional hazards models were used to calculate the all-cause mortality risk in each time interval. The model was adjusted for major clinical factors related to mortality including age, sex, body mass index, presence of cavities, erythrocyte sedimentation rate, positive acid-fast bacilli (AFB) smear, clarithromycin resistance, and comorbid conditions. RESULTS: A total of 486 patients treated for MAC-PD were included in the analysis. A significant inverse correlation was observed between mortality and duration of treatment (P for trend = .007). Long-term treatment (≥18 months) was significantly associated with reduced mortality (adjusted hazard ratio, 0.32 [95% confidence interval, .15-.71]). In subgroup analyses, patients with cavitary lesions (adjusted hazard ratio, 0.17 [95% confidence interval, .05-.57]) or positive AFB smears (0.13 [.02-.84]) at baseline maintained this significant inverse relationship between treatment duration and mortality. CONCLUSIONS: Long-term antimicrobial treatment should be actively considered in patients with progressive MAC-PD, especially in the presence of cavities or positive AFB smears indicative of high mycobacterial burden.
Asunto(s)
Enfermedades Pulmonares , Infección por Mycobacterium avium-intracellulare , Humanos , Adolescente , Adulto , Complejo Mycobacterium avium , Infección por Mycobacterium avium-intracellulare/tratamiento farmacológico , Infección por Mycobacterium avium-intracellulare/microbiología , Estudios Retrospectivos , Enfermedades Pulmonares/microbiología , PulmónRESUMEN
This article reviews the radiologic and pathologic findings of the epithelial and endothelial injuries in COVID-19 pneumonia to help radiologists understand the fundamental nature of the disease. The radiologic and pathologic manifestations of COVID-19 pneumonia result from epithelial and endothelial injuries based on viral toxicity and immunopathologic effects. The pathologic features of mild and reversible COVID-19 pneumonia involve nonspecific pneumonia or an organizing pneumonia pattern, while the pathologic features of potentially fatal and irreversible COVID-19 pneumonia are characterized by diffuse alveolar damage followed by fibrosis or acute fibrinous organizing pneumonia. These pathologic responses of epithelial injuries observed in COVID-19 pneumonia are not specific to SARS-CoV-2 but rather constitute universal responses to viral pneumonia. Endothelial injury in COVID-19 pneumonia is a prominent feature compared with other types of viral pneumonia and encompasses various vascular abnormalities at different levels, including pulmonary thromboembolism, vascular engorgement, peripheral vascular reduction, a vascular tree-in-bud pattern, and lung perfusion abnormality. Chest CT with different imaging techniques (eg, CT quantification, dual-energy CT perfusion) can fully capture the various manifestations of epithelial and endothelial injuries. CT can thus aid in establishing prognosis and identifying patients at risk for deterioration.
Asunto(s)
COVID-19 , Enfermedades Pulmonares , Neumonía Viral , Neumonía , Humanos , COVID-19/patología , SARS-CoV-2 , Neumonía Viral/patología , Enfermedades Pulmonares/patología , Radiólogos , Pulmón/patologíaRESUMEN
Background The impact of artificial intelligence (AI)-based computer-aided detection (CAD) software has not been prospectively explored in real-world populations. Purpose To investigate whether commercial AI-based CAD software could improve the detection rate of actionable lung nodules on chest radiographs in participants undergoing health checkups. Materials and Methods In this single-center, pragmatic, open-label randomized controlled trial, participants who underwent chest radiography between July 2020 and December 2021 in a health screening center were enrolled and randomized into intervention (AI group) and control (non-AI group) arms. One of three designated radiologists with 13-36 years of experience interpreted each radiograph, referring to the AI-based CAD results for the AI group. The primary outcome was the detection rate, that is, the number of true-positive radiographs divided by the total number of radiographs, of actionable lung nodules confirmed on CT scans obtained within 3 months. Actionable nodules were defined as solid nodules larger than 8 mm or subsolid nodules with a solid portion larger than 6 mm (Lung Imaging Reporting and Data System, or Lung-RADS, category 4). Secondary outcomes included the positive-report rate, sensitivity, false-referral rate, and malignant lung nodule detection rate. Clinical outcomes were compared between the two groups using univariable logistic regression analyses. Results A total of 10 476 participants (median age, 59 years [IQR, 50-66 years]; 5121 men) were randomized to an AI group (n = 5238) or non-AI group (n = 5238). The trial met the predefined primary outcome, demonstrating an improved detection rate of actionable nodules in the AI group compared with the non-AI group (0.59% [31 of 5238 participants] vs 0.25% [13 of 5238 participants], respectively; odds ratio, 2.4; 95% CI: 1.3, 4.7; P = .008). The detection rate for malignant lung nodules was higher in the AI group compared with the non-AI group (0.15% [eight of 5238 participants] vs 0.0% [0 of 5238 participants], respectively; P = .008). The AI and non-AI groups showed similar false-referral rates (45.9% [56 of 122 participants] vs 56.0% [56 of 100 participants], respectively; P = .14) and positive-report rates (2.3% [122 of 5238 participants] vs 1.9% [100 of 5238 participants]; P = .14). Conclusion In health checkup participants, artificial intelligence-based software improved the detection of actionable lung nodules on chest radiographs. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Auffermann in this isssue.
Asunto(s)
Neoplasias Pulmonares , Lesiones Precancerosas , Masculino , Humanos , Persona de Mediana Edad , Inteligencia Artificial , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/patología , Tomografía Computarizada por Rayos X , Radiografía , Pulmón/patología , Sensibilidad y Especificidad , Radiografía Torácica/métodos , Interpretación de Imagen Radiográfica Asistida por Computador/métodosRESUMEN
OBJECTIVES: To investigate computer-aided quantitative scores from high-resolution CT (HRCT) images and determine their longitudinal changes and clinical significance in patients with idiopathic inflammatory myopathies (IIMs)-related interstitial lung disease (IIMs-ILD). METHODS: The clinical data and HRCT images of 80 patients with IIMs who underwent serial HRCT scans at least twice were retrospectively analysed. Quantitative ILD (QILD) scores (%) were calculated as the sum of the extent of lung fibrosis, ground-glass opacity, and honeycombing. The individual time-estimated ΔQILD between two consecutive scans was derived using a linear approximation of yearly changes. RESULTS: The baseline median QILD (interquartile range) scores in the whole lung were 28.1% (19.1-43.8). The QILD was significantly correlated with forced vital capacity (r = -0.349, P = 0.002) and diffusing capacity for carbon monoxide (r = -0.381, P = 0.001). For ΔQILD between the first two scans, according to the visual ILD subtype, QILD aggravation was more frequent in patients with usual interstitial pneumonia (UIP) than non-UIP (80.0% vs 44.4%, P = 0.013). Multivariable logistic regression analyses identified UIP was significantly related to radiographic ILD progression (ΔQILD >2%, P = 0.015). Patients with higher baseline QILD scores (>28.1%) had a higher risk of lung transplantation or death (P = 0.015). In the analysis of three serial HRCT scans (n = 41), dynamic ΔQILD with four distinct patterns (improving, worsening, convex and concave) was observed. CONCLUSION: QILD changes in IIMs-ILD were dynamic, and baseline UIP patterns seemed to be related to a longitudinal progression in QILD. These may be potential imaging biomarkers for lung function, changes in ILD severity and prognosis in IIMs-ILD.
Asunto(s)
Fibrosis Pulmonar Idiopática , Enfermedades Pulmonares Intersticiales , Miositis , Humanos , Estudios Retrospectivos , Enfermedades Pulmonares Intersticiales/diagnóstico por imagen , Pulmón/diagnóstico por imagen , Miositis/diagnóstico por imagenRESUMEN
OBJECTIVES: To evaluate the relationship of changes in the deep learning-based CT quantification of interstitial lung disease (ILD) with changes in forced vital capacity (FVC) and visual assessments of ILD progression, and to investigate their prognostic implications. METHODS: This study included ILD patients with CT scans at intervals of over 2 years between January 2015 and June 2021. Deep learning-based texture analysis software was used to segment ILD findings on CT images (fibrosis: reticular opacity + honeycombing cysts; total ILD extent: ground-glass opacity + fibrosis). Patients were grouped according to the absolute decline of predicted FVC (< 5%, 5-10%, and ≥ 10%) and ILD progression assessed by thoracic radiologists, and their quantification results were compared among these groups. The associations between quantification results and survival were evaluated using multivariable Cox regression analysis. RESULTS: In total, 468 patients (239 men; 64 ± 9.5 years) were included. Fibrosis and total ILD extents more increased in patients with larger FVC decline (p < .001 in both). Patients with ILD progression had higher fibrosis and total ILD extent increases than those without ILD progression (p < .001 in both). Increases in fibrosis and total ILD extent were significant prognostic factors when adjusted for absolute FVC declines of ≥ 5% (hazard ratio [HR] 1.844, p = .01 for fibrosis; HR 2.484, p < .001 for total ILD extent) and ≥ 10% (HR 2.918, p < .001 for fibrosis; HR 3.125, p < .001 for total ILD extent). CONCLUSION: Changes in ILD CT quantification correlated with changes in FVC and visual assessment of ILD progression, and they were independent prognostic factors in ILD patients. CLINICAL RELEVANCE STATEMENT: Quantifying the CT features of interstitial lung disease using deep learning techniques could play a key role in defining and predicting the prognosis of progressive fibrosing interstitial lung disease. KEY POINTS: ⢠Radiologic findings on high-resolution CT are important in diagnosing progressive fibrosing interstitial lung disease. ⢠Deep learning-based quantification results for fibrosis and total interstitial lung disease extents correlated with the decline in forced vital capacity and visual assessments of interstitial lung disease progression, and emerged as independent prognostic factors. ⢠Deep learning-based interstitial lung disease CT quantification can play a key role in diagnosing and prognosticating progressive fibrosing interstitial lung disease.
RESUMEN
OBJECTIVE: To investigate the prognostic value of deep learning (DL)-driven CT fibrosis quantification in idiopathic pulmonary fibrosis (IPF). METHODS: Patients diagnosed with IPF who underwent nonenhanced chest CT and spirometry between 2005 and 2009 were retrospectively collected. Proportions of normal (CT-Norm%) and fibrotic lung volume (CT-Fib%) were calculated on CT using the DL software. The correlations of CT-Norm% and CT-Fib% with forced vital capacity (FVC) and diffusion capacity of carbon monoxide (DLCO) were evaluated. The multivariable-adjusted hazard ratios (HRs) of CT-Norm% and CT-Fib% for overall survival were calculated with clinical and physiologic variables as covariates using Cox regression. The feasibility of substituting CT-Norm% for DLCO in the GAP index was investigated using time-dependent areas under the receiver operating characteristic curve (TD-AUCs) at 3 years. RESULTS: In total, 161 patients (median age [IQR], 68 [62-73] years; 104 men) were evaluated. CT-Norm% and CT-Fib% showed significant correlations with FVC (Pearson's r, 0.40 for CT-Norm% and - 0.37 for CT-Fib%; both p < 0.001) and DLCO (0.52 for CT-Norm% and - 0.46 for CT-Fib%; both p < 0.001). On multivariable Cox regression, both CT-Norm% and CT-Fib% were independent prognostic factors when adjusted to age, sex, smoking status, comorbid chronic diseases, FVC, and DLCO (HRs, 0.98 [95% CI 0.97-0.99; p < 0.001] for CT-Norm% at 3 years and 1.03 [1.01-1.05; p = 0.01] for CT-Fib%). Substituting CT-Norm% for DLCO showed comparable discrimination to the original GAP index (TD-AUC, 0.82 [0.78-0.85] vs. 0.82 [0.79-0.86]; p = 0.75). CONCLUSION: CT-Norm% and CT-Fib% calculated using chest CT-based deep learning software were independent prognostic factors for overall survival in IPF. KEY POINTS: ⢠Normal and fibrotic lung volume proportions were automatically calculated using commercial deep learning software from chest CT taken from 161 patients diagnosed with idiopathic pulmonary fibrosis. ⢠CT-quantified volumetric parameters from commercial deep learning software were correlated with forced vital capacity (Pearson's r, 0.40 for normal and - 0.37 for fibrotic lung volume proportions) and diffusion capacity of carbon monoxide (Pearson's r, 0.52 and - 0.46, respectively). ⢠Normal and fibrotic lung volume proportions (hazard ratios, 0.98 and 1.04; both p < 0.001) independently predicted overall survival when adjusted for clinical and physiologic variables.
Asunto(s)
Aprendizaje Profundo , Fibrosis Pulmonar Idiopática , Masculino , Humanos , Anciano , Pronóstico , Monóxido de Carbono , Estudios Retrospectivos , Fibrosis Pulmonar Idiopática/patología , Tomografía Computarizada por Rayos X , Capacidad Vital , Fibrosis , Pulmón/patologíaRESUMEN
OBJECTIVES: To develop and validate CT-based deep learning (DL) models that learn morphological and histopathological features for lung adenocarcinoma prognostication, and to compare them with a previously developed DL discrete-time survival model. METHODS: DL models were trained to simultaneously predict five morphological and histopathological features using preoperative chest CT scans from patients with resected lung adenocarcinomas. The DL score was validated in temporal and external test sets, with freedom from recurrence (FFR) and overall survival (OS) as outcomes. Discrimination was evaluated using the time-dependent area under the receiver operating characteristic curve (TD-AUC) and compared with the DL discrete-time survival model. Additionally, we performed multivariable Cox regression analysis. RESULTS: In the temporal test set (640 patients; median age, 64 years), the TD-AUC was 0.79 for 5-year FFR and 0.73 for 5-year OS. In the external test set (846 patients; median age, 65 years), the TD-AUC was 0.71 for 5-year OS, equivalent to the pathologic stage (0.71 vs. 0.71 [p = 0.74]). The prognostic value of the DL score was independent of clinical factors (adjusted per-percentage hazard ratio for FFR (temporal test), 1.02 [95% CI: 1.01-1.03; p < 0.001]; OS (temporal test), 1.01 [95% CI: 1.002-1.02; p = 0.01]; OS (external test), 1.01 [95% CI: 1.005-1.02; p < 0.001]). Our model showed a higher TD-AUC than the DL discrete-time survival model, but without statistical significance (2.5-year OS: 0.73 vs. 0.68; p = 0.13). CONCLUSION: The CT-based prognostic score from collective deep learning of morphological and histopathological features showed potential in predicting survival in lung adenocarcinomas. CLINICAL RELEVANCE STATEMENT: Collective CT-based deep learning of morphological and histopathological features presents potential for enhancing lung adenocarcinoma prognostication and optimizing pre-/postoperative management. KEY POINTS: ⢠A CT-based prognostic model was developed using collective deep learning of morphological and histopathological features from preoperative CT scans of 3181 patients with resected lung adenocarcinoma. ⢠The prognostic performance of the model was comparable-to-higher performance than the pathologic T category or stage. ⢠Our approach yielded a higher discrimination performance than the direct survival prediction model, but without statistical significance (0.73 vs. 0.68; p=0.13).
RESUMEN
BACKGROUND. Chest radiography is an essential tool for diagnosing community-acquired pneumonia (CAP), but it has an uncertain prognostic role in the care of patients with CAP. OBJECTIVE. The purpose of this study was to develop a deep learning (DL) model to predict 30-day mortality from diagnosis among patients with CAP by use of chest radiographs to validate the performance model in patients from different time periods and institutions. METHODS. In this retrospective study, a DL model was developed from data on 7105 patients from one institution from March 2013 to December 2019 (3:1:1 allocation to training, validation, and internal test sets) to predict the risk of all-cause mortality within 30 days after CAP diagnosis by use of patients' initial chest radiographs. The DL model was evaluated in a cohort of patients diagnosed with CAP during emergency department visits at the same institution from January 2020 to March 2020 (temporal test cohort [n = 947]) and in two additional cohorts from different institutions (external test cohort A [n = 467], January 2020 to December 2020; external test cohort B [n = 381], March 2019 to October 2021). AUCs were compared between the DL model and an established risk prediction tool based on the presence of confusion, blood urea nitrogen level, respiratory rate, blood pressure, and age 65 years or older (CURB-65 score). The combination of CURB-65 score and DL model was evaluated with a logistic regression model. RESULTS. The AUC for predicting 30-day mortality was significantly larger (p < .001) for the DL model than for CURB-65 score in the temporal test set (0.77 vs 0.67). The larger AUC for the DL model than for CURB-65 score was not significant (p > .05) in external test cohort A (0.80 vs 0.73) or external test cohort B (0.80 vs 0.72). In the three cohorts, the DL model, in comparison with CURB-65 score, had higher (p < .001) specificity (range, 61-69% vs 44-58%) at the sensitivity of CURB-65 score. The combination of DL model and CURB-65 score, in comparison with CURB-65 score, yielded a significant increase in AUC in the temporal test cohort (0.77, p < .001) and external test cohort B (0.80, p = .04) and a nonsignificant increase in AUC in external test cohort A (0.80, p = .16). CONCLUSION. A DL-based model consisting of initial chest radiographs was predictive of 30-day mortality among patients with CAP with improved performance over CURB-65 score. CLINICAL IMPACT. The DL-based model may guide clinical decision-making in the care of patients with CAP.
RESUMEN
OBJECTIVE: Few studies have explored the clinical feasibility of using deep-learning reconstruction to reduce the radiation dose of CT. We aimed to compare the image quality and lung nodule detectability between chest CT using a quarter of the low dose (QLD) reconstructed with vendor-agnostic deep-learning image reconstruction (DLIR) and conventional low-dose (LD) CT reconstructed with iterative reconstruction (IR). MATERIALS AND METHODS: We retrospectively collected 100 patients (median age, 61 years [IQR, 53-70 years]) who received LDCT using a dual-source scanner, where total radiation was split into a 1:3 ratio. QLD CT was generated using a quarter dose and reconstructed with DLIR (QLD-DLIR), while LDCT images were generated using a full dose and reconstructed with IR (LD-IR). Three thoracic radiologists reviewed subjective noise, spatial resolution, and overall image quality, and image noise was measured in five areas. The radiologists were also asked to detect all Lung-RADS category 3 or 4 nodules, and their performance was evaluated using area under the jackknife free-response receiver operating characteristic curve (AUFROC). RESULTS: The median effective dose was 0.16 (IQR, 0.14-0.18) mSv for QLD CT and 0.65 (IQR, 0.57-0.71) mSv for LDCT. The radiologists' evaluations showed no significant differences in subjective noise (QLD-DLIR vs. LD-IR, lung-window setting; 3.23 ± 0.19 vs. 3.27 ± 0.22; P = .11), spatial resolution (3.14 ± 0.28 vs. 3.16 ± 0.27; P = .12), and overall image quality (3.14 ± 0.21 vs. 3.17 ± 0.17; P = .15). QLD-DLIR demonstrated lower measured noise than LD-IR in most areas (P < .001 for all). No significant difference was found between QLD-DLIR and LD-IR for the sensitivity (76.4% vs. 72.2%; P = .35) or the AUFROCs (0.77 vs. 0.78; P = .68) in detecting Lung-RADS category 3 or 4 nodules. Under a noninferiority limit of -0.1, QLD-DLIR showed noninferior detection performance (95% CI for AUFROC difference, -0.04 to 0.06). CONCLUSION: QLD-DLIR images showed comparable image quality and noninferior nodule detectability relative to LD-IR images.
Asunto(s)
Aprendizaje Profundo , Neoplasias Pulmonares , Humanos , Persona de Mediana Edad , Reducción Gradual de Medicamentos , Neoplasias Pulmonares/diagnóstico por imagen , Estudios Retrospectivos , Tomografía Computarizada por Rayos XRESUMEN
BACKGROUND: An artificial intelligence (AI) model using chest radiography (CXR) may provide good performance in making prognoses for COVID-19. OBJECTIVE: We aimed to develop and validate a prediction model using CXR based on an AI model and clinical variables to predict clinical outcomes in patients with COVID-19. METHODS: This retrospective longitudinal study included patients hospitalized for COVID-19 at multiple COVID-19 medical centers between February 2020 and October 2020. Patients at Boramae Medical Center were randomly classified into training, validation, and internal testing sets (at a ratio of 8:1:1, respectively). An AI model using initial CXR images as input, a logistic regression model using clinical information, and a combined model using the output of the AI model (as CXR score) and clinical information were developed and trained to predict hospital length of stay (LOS) ≤2 weeks, need for oxygen supplementation, and acute respiratory distress syndrome (ARDS). The models were externally validated in the Korean Imaging Cohort of COVID-19 data set for discrimination and calibration. RESULTS: The AI model using CXR and the logistic regression model using clinical variables were suboptimal to predict hospital LOS ≤2 weeks or the need for oxygen supplementation but performed acceptably in the prediction of ARDS (AI model area under the curve [AUC] 0.782, 95% CI 0.720-0.845; logistic regression model AUC 0.878, 95% CI 0.838-0.919). The combined model performed better in predicting the need for oxygen supplementation (AUC 0.704, 95% CI 0.646-0.762) and ARDS (AUC 0.890, 95% CI 0.853-0.928) compared to the CXR score alone. Both the AI and combined models showed good calibration for predicting ARDS (P=.079 and P=.859). CONCLUSIONS: The combined prediction model, comprising the CXR score and clinical information, was externally validated as having acceptable performance in predicting severe illness and excellent performance in predicting ARDS in patients with COVID-19.
Asunto(s)
COVID-19 , Aprendizaje Profundo , Síndrome de Dificultad Respiratoria , Humanos , Inteligencia Artificial , COVID-19/diagnóstico por imagen , Estudios Longitudinales , Estudios Retrospectivos , Radiografía , Oxígeno , PronósticoRESUMEN
[This corrects the article DOI: 10.2196/42717.].
RESUMEN
Background Accurate detection of pneumothorax on chest radiographs, the most common complication of percutaneous transthoracic needle biopsies (PTNBs), is not always easy in practice. A computer-aided detection (CAD) system may help detect pneumothorax. Purpose To investigate whether a deep learning-based CAD system can improve detection performance for pneumothorax on chest radiographs after PTNB in clinical practice. Materials and Methods A CAD system for post-PTNB pneumothorax detection on chest radiographs was implemented in an institution in February 2020. This retrospective cohort study consecutively included chest radiographs interpreted with CAD assistance (CAD-applied group; February 2020 to November 2020) and those interpreted before implementation (non-CAD group; January 2018 to January 2020). The reference standard was defined by consensus reading by two radiologists. The diagnostic accuracy for pneumothorax was compared between the two groups using generalized estimating equations. Matching was performed according to whether the radiograph reader and PTNB operator were the same using the greedy method. Results A total of 676 radiographs from 655 patients (mean age: 67 years ± 11; 390 men) in the CAD-applied group and 676 radiographs from 664 patients (mean age: 66 years ± 12; 400 men) in the non-CAD group were included. The incidence of pneumothorax was 18.2% (123 of 676 radiographs) in the CAD-applied group and 22.5% (152 of 676 radiographs) in the non-CAD group (P = .05). The CAD-applied group showed higher sensitivity (85.4% vs 67.1%), negative predictive value (96.8% vs 91.3%), and accuracy (96.8% vs 92.3%) than the non-CAD group (all P < .001). The sensitivity for a small amount of pneumothorax improved in the CAD-applied group (pneumothorax of <10%: 74.5% vs 51.4%, P = .009; pneumothorax of 10%-15%: 92.7% vs 70.2%, P = .008). Among patients with pneumothorax, 34 of 655 (5.0%) in the non-CAD group and 16 of 664 (2.4%) in the CAD-applied group (P = .009) required subsequent drainage catheter insertion. Conclusion A deep learning-based computer-aided detection system improved the detection performance for pneumothorax on chest radiographs after lung biopsy. © RSNA, 2022 See also the editorial by Schiebler and Hartung in this issue.