Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Anal Chem ; 90(7): 4711-4718, 2018 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-29498261

RESUMEN

There are many gas phase compounds present in the atmosphere that affect and influence the earth's climate. These compounds absorb and emit radiation, a process which is the fundamental cause of the greenhouse effect. The major greenhouse gases in the earth's atmosphere are carbon dioxide, methane, nitrous oxide, and ozone. Some halocarbons are also strong greenhouse gases and are linked to stratospheric ozone depletion. Hydrocarbons and monoterpenes are precursors and contributors to atmospheric photochemical processes, which lead to the formation of particulates and secondary photo-oxidants such as ozone, leading to photochemical smog. Reactive gases such as nitric oxide and sulfur dioxide are also compounds found in the atmosphere and generally lead to the formation of other oxides. These compounds can be oxidized in the air to acidic and corrosive gases and contribute to photochemical smog. Measurements of these compounds in the atmosphere have been ongoing for decades to track growth rates and assist in curbing emissions of these compounds into the atmosphere. To accurately establish mole fraction trends and assess the role of these gas phase compounds in atmospheric chemistry, it is essential to have good calibration standards. The National Institute of Standards and Technology has been developing standards of many of these compounds for over 40 years. This paper discusses the development of these standards.

2.
J Breath Res ; 16(4)2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35584612

RESUMEN

Exhaled breath is a non-invasive, information-rich matrix with the potential to diagnose or monitor disease, including infectious disease. Despite significant effort dedicated to biomarker identification in case control studies, very few breath tests are established in practice. In this topical review, we identify how gas standards support breath analysis today and what is needed to support further expansion and translation to practice. We examine forensic and clinical breath tests and discuss how confidence has been built through unambiguous biomarker identification and quantitation supported by gas calibration standards. Based on this discussion, we identify a need for multicomponent gas standards with part-per-trillion to part-per-million concentrations. We highlight National Institute of Standards and Technology gas standards developed for atmospheric measurements that are also relevant to breath analysis and describe investigations of long-term stability, chemical reactions, and interactions with gas cylinder wall treatments. An overview of emerging online instruments and their need for gas standards is also presented. This review concludes with a discussion of our ongoing research to examine the feasibility of producing multicomponent gas standards at breath-relevant concentrations. Such standards could be used to investigate interference from ubiquitous endogenous compounds and as a starting point for standards tailored to specific breath tests.


Asunto(s)
Pruebas Respiratorias , Compuestos Orgánicos Volátiles , Biomarcadores , Espiración , Humanos , Estándares de Referencia , Compuestos Orgánicos Volátiles/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA