Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Am J Physiol Lung Cell Mol Physiol ; 302(4): L410-9, 2012 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-22160304

RESUMEN

To define roles for reactive oxygen species (ROS) and epithelial sodium channel (ENaC) in maintaining lung fluid balance in vivo, we used two novel whole animal imaging approaches. Live X-ray fluoroscopy enabled quantification of air space fluid content of C57BL/6J mouse lungs challenged by intratracheal (IT) instillation of saline; results were confirmed by using conventional lung wet-to-dry weight ratios and Evans blue as measures of pulmonary edema. Visualization and quantification of ROS produced in lungs was performed in mice that had been administered a redox-sensitive dye, hydro-Cy7, by IT instillation. We found that inhibition of NADPH oxidase with a Rac-1 inhibitor, NSC23766, resulted in alveolar flooding, which correlated with a decrease in lung ROS production in vivo. Consistent with a role for Nox2 in alveolar fluid balance, Nox2(-/-) mice showed increased retention of air space fluid compared with wild-type controls. Interestingly, fluoroscopic analysis of C57BL/6J lungs IT instilled with LPS showed an acute stimulation of lung fluid clearance and ROS production in vivo that was abrogated by the ROS scavenger tetramethylpiperidine-N-oxyl (TEMPO). Acute application of LPS increased the activity of 20 pS nonselective ENaC channels in rat type 1 cells; the average number of channel and single-channel open probability (NPo) increased from 0.14 ± 0.04 to 0.62 ± 0.23. Application of TEMPO to the same cell-attached recording caused an immediate significant decrease in ENaC NPo to 0.04 ± 0.03. These data demonstrate that, in vivo, ROS has the capacity to stimulate lung fluid clearance by increasing ENaC activity.


Asunto(s)
Canales Epiteliales de Sodio/metabolismo , Líquido Extracelular/metabolismo , Glicoproteínas de Membrana/fisiología , NADPH Oxidasas/fisiología , Alveolos Pulmonares/enzimología , Canales de Sodio/metabolismo , Superóxidos/metabolismo , Aminoquinolinas/farmacología , Animales , Líquido Extracelular/diagnóstico por imagen , Técnicas de Inactivación de Genes , Lipopolisacáridos/administración & dosificación , Lipopolisacáridos/farmacocinética , Pulmón/diagnóstico por imagen , Pulmón/enzimología , Pulmón/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , NADPH Oxidasa 2 , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Neuropéptidos/antagonistas & inhibidores , Neuropéptidos/metabolismo , Técnicas de Placa-Clamp , Alveolos Pulmonares/metabolismo , Pirimidinas/farmacología , Radiografía , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Cloruro de Sodio/administración & dosificación , Cloruro de Sodio/farmacocinética , Proteínas de Unión al GTP rac/antagonistas & inhibidores , Proteínas de Unión al GTP rac/metabolismo , Proteína de Unión al GTP rac1
2.
Am J Physiol Lung Cell Mol Physiol ; 298(4): L509-20, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20097736

RESUMEN

We examine whether alveolar cells can control release of O(2)(-) through regulated NADPH oxidase (NOX) 2 (NOX2) activity to maintain lung fluid homeostasis. Using FACS to purify alveolar epithelial cells, we show that type 1 cells robustly express each of the critical NOX components that catalyze the production of O(2)(-) (NOX2 or gp91(phox), p22(phox), p67(phox), p47(phox), and p40(phox) subunits) as well as Rac1 at substantially higher levels than type 2 cells. Immunohistochemical labeling of lung tissue shows that Rac1 expression is cytoplasmic and resides near the apical surface of type 1 cells, whereas NOX2 coimmunoprecipitates with epithelial sodium channel (ENaC). Since Rac1 is a known regulator of NOX2, and hence O(2)(-) release, we tested whether inhibition or activation of Rac1 influenced ENaC activity. Indeed, 1 microM NSC23766 inhibition of Rac1 decreased O(2)(-) output in lung cells and significantly decreased ENaC activity from 0.87 +/- 0.16 to 0.52 +/- 0.16 [mean number of channels (N) and single-channel open probability (P(o)) (NP(o)) +/- SE, n = 6; P < 0.05] in type 2 cells. NSC23766 (10 microM) decreased ENaC NP(o) from 1.16 +/- 0.27 to 0.38 +/- 0.10 (n = 6 in type 1 cells). Conversely, 10 ng/ml EGF (a known stimulator of both Rac1 and O(2)(-) release) increased ENaC NP(o) values in both type 1 and 2 cells. NP(o) values increased from 0.48 +/- 0.21 to 0.91 +/- 0.28 in type 2 cells (P < 0.05; n = 10). In type 1 cells, ENaC activity also significantly increased from 0.40 +/- 0.15 to 0.60 +/- 0.23 following EGF treatment (n = 7). Sequestering O(2)(-) using 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO) compound prevented EGF activation of ENaC in both type 1 and 2 cells. In conclusion, we report that Rac1-mediated NOX2 activity is an important component in O(2)(-) regulation of ENaC.


Asunto(s)
Canales Epiteliales de Sodio/metabolismo , Epitelio/enzimología , Glicoproteínas de Membrana/metabolismo , NADPH Oxidasas/metabolismo , Alveolos Pulmonares/enzimología , Superóxidos/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Células Epiteliales Alveolares/citología , Células Epiteliales Alveolares/efectos de los fármacos , Células Epiteliales Alveolares/enzimología , Aminoquinolinas/farmacología , Animales , Líquidos Corporales/efectos de los fármacos , Factor de Crecimiento Epidérmico/farmacología , Epitelio/efectos de los fármacos , Epitelio/metabolismo , Citometría de Flujo , Homeostasis/efectos de los fármacos , Inmunohistoquímica , Inmunoprecipitación , Masculino , NADPH Oxidasa 2 , Alveolos Pulmonares/efectos de los fármacos , Alveolos Pulmonares/metabolismo , Pirimidinas/farmacología , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Proteína de Unión al GTP rac1/antagonistas & inhibidores
3.
J Vis Exp ; (42)2010 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-20834218

RESUMEN

Intratracheal instillations deliver solutes directly into the lungs. This procedure targets the delivery of the instillate into the distal regions of the lung, and is therefore often incorporated in studies aimed at studying alveoli. We provide a detailed survival protocol for performing intratracheal instillations in mice. Using this approach, one can target delivery of test solutes or solids (such as lung therapeutics, surfactants, viruses, and small oligonucleotides) into the distal lung. Tracheal instillations may be the preferred methodology, over inhalation protocols that may primarily target the upper respiratory tract and possibly expose the investigator to potentially hazardous substances. Additionally, in using the tracheal instillation protocol, animals can fully recover from the non-invasive procedure. This allows for making subsequent physiological measurements on test animals, or reinstallation using the same animal. The amount of instillate introduced into the lung must be carefully determined and osmotically balanced to ensure animal recovery. Typically, 30-75 µL instillate volume can be introduced into mouse lung.


Asunto(s)
Intubación Intratraqueal/métodos , Pulmón/fisiología , Animales , Instilación de Medicamentos , Ratones , Tráquea/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA