Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Mov Disord ; 25(13): 2176-82, 2010 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-20669319

RESUMEN

The purpose of this study was to characterise a novel family with very slowly progressive pure spinocerebellar ataxia (SCA) caused by a deletion in the inositol 1,4,5-triphosphate receptor 1 (ITPR1) gene on chromosome 3. This is a detailed clinical, genetic, and radiological description of the genotype. Deletions in ITPR1 have been shown to cause SCA15/SCA16 in six families to date. A further Japanese family has been identified with an ITPR1 point mutation. The exact prevalence is as yet unknown, but is probably higher than previously thought. The clinical phenotype of the family is described, and videotaped clinical examinations are presented. Serial brain magnetic resonance imaging studies were carried out on one affected individual, and genetic analysis was performed on several family members. Protein analysis confirmed the ITPR1 deletion. Affected subjects display a remarkably slow, almost pure cerebellar syndrome. Serial magnetic resonance imaging shows moderate cerebellar atrophy with mild inferior parietal and temporal cortical volume loss. Genetic analysis shows a deletion of 346,487 bp in ITPR1 (the second largest ITPR1 deletion reported to date), suggesting SCA15 is due to a loss of ITPR1 function. Western blotting of lymphoblastoid cell line protein confirms reduced ITPR1 protein levels. SCA15 is a slowly or nonprogressive pure cerebellar ataxia, which appears to be caused by a loss of ITPR1 function and a reduction in the translated protein. Patients with nonprogressive or slowly progressive ataxia should be screened for ITPR1 defects.


Asunto(s)
Eliminación de Gen , Receptores de Inositol 1,4,5-Trifosfato/genética , Polimorfismo de Nucleótido Simple/genética , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/patología , Adulto , Salud de la Familia , Femenino , Pruebas Genéticas , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Ataxias Espinocerebelosas/clasificación
2.
J Cell Sci ; 122(Pt 14): 2424-35, 2009 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-19549690

RESUMEN

MAP1B is a developmentally regulated microtubule-associated phosphoprotein that regulates microtubule dynamics in growing axons and growth cones. We used mass spectrometry to map 28 phosphorylation sites on MAP1B, and selected for further study a putative primed GSK3 beta site and compared it with two nonprimed GSK3 beta sites that we had previously characterised. We raised a panel of phosphospecific antibodies to these sites on MAP1B and used it to assess the distribution of phosphorylated MAP1B in the developing nervous system. This showed that the nonprimed sites are restricted to growing axons, whereas the primed sites are also expressed in the neuronal cell body. To identify kinases phosphorylating MAP1B, we added kinase inhibitors to cultured embryonic cortical neurons and monitored MAP1B phosphorylation with our panel of phosphospecific antibodies. These experiments identified dual-specificity tyrosine-phosphorylation-regulated kinase (DYRK1A) as the kinase that primes sites of GSK3 beta phosphorylation in MAP1B, and we confirmed this by knocking down DYRK1A in cultured embryonic cortical neurons by using shRNA. DYRK1A knockdown compromised neuritogenesis and was associated with alterations in microtubule stability. These experiments demonstrate that MAP1B has DYRK1A-primed and nonprimed GSK3 beta sites that are involved in the regulation of microtubule stability in growing axons.


Asunto(s)
Axones/enzimología , Corteza Cerebral/enzimología , Glucógeno Sintasa Quinasa 3/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/enzimología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Factores de Edad , Animales , Axones/efectos de los fármacos , Células COS , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/embriología , Chlorocebus aethiops , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3 beta , Espectrometría de Masas , Ratones , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/efectos de los fármacos , Mutación , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/genética , Interferencia de ARN , Ratas , Proteínas Recombinantes de Fusión , Serina , Médula Espinal/embriología , Médula Espinal/enzimología , Treonina , Transfección , Quinasas DyrK
3.
Mol Cell Neurosci ; 28(3): 524-34, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15737742

RESUMEN

In pheochromocytoma 12 (PC12) cells and sympathetic neurons, nerve growth factor (NGF) engagement with the tropomyosin-related tyrosine kinase (TrkA) receptor activates the serine/threonine kinase glycogen synthase kinase 3beta (GSK3beta), enabling it to phosphorylate the microtubule-associated protein 1B (MAP1B). GSK3beta phosphorylation of MAP1B acts as a molecular switch to regulate microtubule dynamics in growing axons, and hence the rate of axon growth. An important question relates to the identification of the upstream pathway linking the activation of GSK3beta with TrkA engagement. TrkA can utilise a number of intracellular signalling pathways, including the mitogen-activated protein kinase (MAPK) pathway and the phosphatidylinositol-3 kinase (PI3K) pathway. We now show, using pharmacological inhibitor studies of PC12 cells and sympathetic neurons in culture and in vitro kinase and activation assays, that the MAPK pathway, and not the PI3K pathway, links NGF engagement with the TrkA receptor to GSK3beta activation in PC12 cells and sympathetic neurons. We also show that activated GSK3beta is a small fraction of the total GSK3beta present in developing brain and that it is not part of a multiprotein complex. Thus, NGF drives increased neurite growth rates partly by coupling the MAPK pathway to the activation of GSK3beta and thereby phosphorylation of MAP1B.


Asunto(s)
Encéfalo/embriología , Encéfalo/crecimiento & desarrollo , Glucógeno Sintasa Quinasa 3/metabolismo , Conos de Crecimiento/enzimología , Sistema de Señalización de MAP Quinasas/fisiología , Proteínas Asociadas a Microtúbulos/metabolismo , Animales , Animales Recién Nacidos , Encéfalo/citología , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Células Cultivadas , Inhibidores Enzimáticos/farmacología , Glucógeno Sintasa Quinasa 3 beta , Conos de Crecimiento/ultraestructura , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Proteínas Asociadas a Microtúbulos/efectos de los fármacos , Proteína Quinasa 3 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Factor de Crecimiento Nervioso/metabolismo , Células PC12 , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Fosforilación/efectos de los fármacos , Ratas , Ratas Wistar , Receptor trkA/metabolismo , Ganglio Cervical Superior
4.
J Cell Sci ; 118(Pt 5): 993-1005, 2005 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-15731007

RESUMEN

Recent experiments show that the microtubule-associated protein (MAP) 1B is a major phosphorylation substrate for the serine/threonine kinase glycogen synthase kinase-3beta (GSK-3beta) in differentiating neurons. GSK-3beta phosphorylation of MAP1B appears to act as a molecular switch regulating the control that MAP1B exerts on microtubule dynamics in growing axons and growth cones. Maintaining a population of dynamically unstable microtubules in growth cones is important for axon growth and growth cone pathfinding. We have mapped two GSK-3beta phosphorylation sites on mouse MAP1B to Ser1260 and Thr1265 using site-directed point mutagenesis of recombinant MAP1B proteins, in vitro kinase assays and phospho-specific antibodies. We raised phospho-specific polyclonal antibodies to these two sites and used them to show that MAP1B is phosphorylated by GSK-3beta at Ser1260 and Thr1265 in vivo. We also showed that in the developing nervous system of rat embryos, the expression of GSK-3beta phosphorylated MAP1B is spatially restricted to growing axons, in a gradient that is highest distally, despite the expression of MAP1B and GSK-3beta throughout the entire neuron. This suggests that there is a mechanism that spatially regulates the GSK-3beta phosphorylation of MAP1B in differentiating neurons. Heterologous cell transfection experiments with full-length MAP1B, in which either phosphorylation site was separately mutated to a valine or, in a double mutant, in which both sites were mutated, showed that these GSK-3beta phosphorylation sites contribute to the regulation of microtubule dynamics by MAP1B.


Asunto(s)
Glucógeno Sintasa Quinasa 3/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Serina/química , Treonina/química , Animales , Axones/metabolismo , Sitios de Unión , Western Blotting , Células COS , Proliferación Celular , Corteza Cerebral/metabolismo , ADN Complementario/metabolismo , Electroforesis en Gel de Poliacrilamida , Embrión de Mamíferos/metabolismo , Epítopos/química , Regulación del Desarrollo de la Expresión Génica , Glutatión Transferasa/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Immunoblotting , Ratones , Microscopía Fluorescente , Proteínas Asociadas a Microtúbulos/química , Mutagénesis Sitio-Dirigida , Mutación , Neuronas/metabolismo , Oligonucleótidos/química , Péptidos/química , Fosforilación , Plásmidos/metabolismo , Mutación Puntual , Unión Proteica , Ratas , Ratas Wistar , Proteínas Recombinantes/química , Factores de Tiempo , Transfección , Valina/química
5.
J Neurochem ; 87(4): 935-46, 2003 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-14622124

RESUMEN

We have recently shown that nerve growth factor (NGF) induces the phosphorylation of the microtubule-associated protein 1B (MAP1B) by activating the serine/threonine kinase glycogen synthase kinase 3beta (GSK3beta) in a spatio-temporal pattern in PC12 cells that correlates tightly with neurite growth. PC12 cells express two types of membrane receptor for NGF: TrkA receptors and p75NTR receptors, and it was not clear from our studies which receptor was responsible. We show here that brain-derived neurotrophic factor, which activates p75NTR but not TrkA receptors, does not stimulate GSK3beta phosphorylation of MAP1B in PC12 cells. Similarly, NGF fails to activate GSK3beta phosphorylation of MAP1B in PC12 cells that lack TrkA receptors but express p75NTR receptors (PC12 nnr). Chick ciliary ganglion neurons in culture lack TrkA receptors but express p75NTR and also fail to show NGF-dependent GSK3beta phosphorylation of MAP1B, whereas in rat superior cervical ganglion neurons in culture, NGF activation of TrkA receptors elicits GSK3beta phosphorylation of MAP1B. Finally, inhibition of TrkA receptor tyrosine kinase activity in PC12 cells and superior cervical ganglion neurons with K252a potently and dose-dependently inhibits neurite elongation while concomitantly blocking GSK3beta phosphorylation of MAP1B. These results suggest that the activation of GSK3beta by NGF is mediated through the TrkA tyrosine kinase receptor and not through p75NTR receptors.


Asunto(s)
Glucógeno Sintasa Quinasa 3/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Factor de Crecimiento Nervioso/farmacología , Neuronas/metabolismo , Receptor trkA/metabolismo , Animales , Axones/efectos de los fármacos , Carbazoles/farmacología , Células Cultivadas , Embrión de Pollo , Relación Dosis-Respuesta a Droga , Glucógeno Sintasa Quinasa 3/efectos de los fármacos , Glucógeno Sintasa Quinasa 3 beta , Alcaloides Indólicos , Neuritas/efectos de los fármacos , Neuronas/citología , Neuronas/efectos de los fármacos , Células PC12 , Fosforilación/efectos de los fármacos , Ratas , Ratas Wistar , Receptor de Factor de Crecimiento Nervioso , Receptor trkA/antagonistas & inhibidores , Receptores de Factor de Crecimiento Nervioso/metabolismo
6.
Mol Cell Neurosci ; 20(2): 257-70, 2002 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12093158

RESUMEN

Valproate (VPA) and lithium have been used for many years in the treatment of manic depression. However, their mechanisms of action remain poorly understood. Recent studies suggest that lithium and VPA inhibit GSK-3beta, a serine/threonine kinase involved in the insulin and WNT signaling pathways. Inhibition of GSK-3beta by high concentrations of lithium has been shown to mimic WNT-7a signaling by inducing axonal remodeling and clustering of synapsin I in developing neurons. Here we have compared the effect of therapeutic concentrations of lithium and VPA during neuronal maturation. VPA and, to a lesser extent, lithium induce clustering of synapsin I. In addition, lithium and VPA induce similar changes in the morphology of axons by increasing growth cone size, spreading, and branching. More importantly, both mood stabilizers decrease the level of MAP-1B-P, a GSK-3beta-phosphorylated form of MAP-1B in developing neurons, suggesting that therapeutic concentrations of these mood stabilizers inhibit GSK-3beta. In vitro kinase assays show that therapeutic concentrations of VPA do not inhibit GSK-3beta but that therapeutic concentrations of lithium partially inhibit GSK-3beta activity. Our results support the idea that both mood stabilizers inhibit GSK-3beta in developing neurons through different pathways. Lithium directly inhibits GSK-3beta in contrast to VPA, which inhibits GSK-3beta indirectly by an as-yet-unknown pathway. These findings may have important implications for the development of new strategies to treat bipolar disorders.


Asunto(s)
Antimaníacos/farmacología , Axones/efectos de los fármacos , Encéfalo/efectos de los fármacos , Proteínas Quinasas Dependientes de Calcio-Calmodulina/antagonistas & inhibidores , Diferenciación Celular/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Sinapsinas/efectos de los fármacos , Ácido Valproico/farmacología , Animales , Animales Recién Nacidos , Axones/metabolismo , Axones/ultraestructura , Encéfalo/citología , Encéfalo/crecimiento & desarrollo , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Diferenciación Celular/fisiología , Células Cultivadas , Relación Dosis-Respuesta a Droga , Combinación de Medicamentos , Interacciones Farmacológicas/fisiología , Inhibidores Enzimáticos/farmacología , Glucógeno Sintasa Quinasa 3 , Inhibidores de Histona Desacetilasas , Histona Desacetilasas/metabolismo , Litio/farmacología , Ratones , Proteínas Asociadas a Microtúbulos/efectos de los fármacos , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/efectos de los fármacos , Microtúbulos/metabolismo , Fibras Nerviosas/efectos de los fármacos , Fibras Nerviosas/metabolismo , Fibras Nerviosas/ultraestructura , Plasticidad Neuronal/fisiología , Proteínas Proto-Oncogénicas/efectos de los fármacos , Proteínas Proto-Oncogénicas/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Sinapsinas/metabolismo , Proteínas Wnt
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA