Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Ann Neurol ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38963256

RESUMEN

The life expectancy of people with multiple sclerosis (MS) has increased, yet we have noted that development of a typical Alzheimer disease dementia syndrome is uncommon. We hypothesized that Alzheimer disease pathology is uncommon in MS patients. In 100 MS patients, the rate of amyloid-ß plasma biomarker positivity was approximately half the rate in 300 non-MS controls matched on age, sex, apolipoprotein E proteotype, and cognitive status. Interestingly, most MS patients who did have amyloid-ß pathology had features atypical for MS at diagnosis. These results support that MS is associated with reduced Alzheimer disease risk, and suggest new avenues of research. ANN NEUROL 2024.

2.
Ann Neurol ; 95(5): 951-965, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38400792

RESUMEN

OBJECTIVE: A clock relating amyloid positron emission tomography (PET) to time was used to estimate the timing of biomarker changes in sporadic Alzheimer disease (AD). METHODS: Research participants were included who underwent cerebrospinal fluid (CSF) collection within 2 years of amyloid PET. The ages at amyloid onset and AD symptom onset were estimated for each individual. The timing of change for plasma, CSF, imaging, and cognitive measures was calculated by comparing restricted cubic splines of cross-sectional data from the amyloid PET positive and negative groups. RESULTS: The amyloid PET positive sub-cohort (n = 118) had an average age of 70.4 ± 7.4 years (mean ± standard deviation) and 16% were cognitively impaired. The amyloid PET negative sub-cohort (n = 277) included individuals with low levels of amyloid plaque burden at all scans who were cognitively unimpaired at the time of the scans. Biomarker changes were detected 15-19 years before estimated symptom onset for CSF Aß42/Aß40, plasma Aß42/Aß40, CSF pT217/T217, and amyloid PET; 12-14 years before estimated symptom onset for plasma pT217/T217, CSF neurogranin, CSF SNAP-25, CSF sTREM2, plasma GFAP, and plasma NfL; and 7-9 years before estimated symptom onset for CSF pT205/T205, CSF YKL-40, hippocampal volumes, and cognitive measures. INTERPRETATION: The use of an amyloid clock enabled visualization and analysis of biomarker changes as a function of estimated years from symptom onset in sporadic AD. This study demonstrates that estimated years from symptom onset based on an amyloid clock can be used as a continuous staging measure for sporadic AD and aligns with findings in autosomal dominant AD. ANN NEUROL 2024;95:951-965.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Biomarcadores , Tomografía de Emisión de Positrones , Humanos , Enfermedad de Alzheimer/sangre , Enfermedad de Alzheimer/líquido cefalorraquídeo , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/diagnóstico , Femenino , Masculino , Biomarcadores/líquido cefalorraquídeo , Biomarcadores/sangre , Anciano , Péptidos beta-Amiloides/líquido cefalorraquídeo , Péptidos beta-Amiloides/sangre , Persona de Mediana Edad , Fragmentos de Péptidos/líquido cefalorraquídeo , Fragmentos de Péptidos/sangre , Anciano de 80 o más Años , Estudios Transversales , Factores de Tiempo , Edad de Inicio , Estudios de Cohortes , Progresión de la Enfermedad , Proteína 1 Similar a Quitinasa-3/líquido cefalorraquídeo , Proteína 1 Similar a Quitinasa-3/sangre , Disfunción Cognitiva/líquido cefalorraquídeo , Disfunción Cognitiva/sangre , Placa Amiloide/diagnóstico por imagen , Placa Amiloide/patología
3.
J Int Neuropsychol Soc ; 30(5): 428-438, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38282413

RESUMEN

OBJECTIVE: Maintaining attention underlies many aspects of cognition and becomes compromised early in neurodegenerative diseases like Alzheimer's disease (AD). The consistency of maintaining attention can be measured with reaction time (RT) variability. Previous work has focused on measuring such fluctuations during in-clinic testing, but recent developments in remote, smartphone-based cognitive assessments can allow one to test if these fluctuations in attention are evident in naturalistic settings and if they are sensitive to traditional clinical and cognitive markers of AD. METHOD: Three hundred and seventy older adults (aged 75.8 +/- 5.8 years) completed a week of remote daily testing on the Ambulatory Research in Cognition (ARC) smartphone platform and also completed clinical, genetic, and conventional in-clinic cognitive assessments. RT variability was assessed in a brief (20-40 seconds) processing speed task using two different measures of variability, the Coefficient of Variation (CoV) and the Root Mean Squared Successive Difference (RMSSD) of RTs on correct trials. RESULTS: Symptomatic participants showed greater variability compared to cognitively normal participants. When restricted to cognitively normal participants, APOE ε4 carriers exhibited greater variability than noncarriers. Both CoV and RMSSD showed significant, and similar, correlations with several in-clinic cognitive composites. Finally, both RT variability measures significantly mediated the relationship between APOE ε4 status and several in-clinic cognition composites. CONCLUSIONS: Attentional fluctuations over 20-40 seconds assessed in daily life, are sensitive to clinical status and genetic risk for AD. RT variability appears to be an important predictor of cognitive deficits during the preclinical disease stage.


Asunto(s)
Enfermedad de Alzheimer , Tiempo de Reacción , Humanos , Enfermedad de Alzheimer/fisiopatología , Enfermedad de Alzheimer/genética , Anciano , Masculino , Femenino , Tiempo de Reacción/fisiología , Anciano de 80 o más Años , Pruebas Neuropsicológicas , Apolipoproteína E4/genética , Teléfono Inteligente , Atención/fisiología
4.
Brain ; 146(7): 2944-2956, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-36542469

RESUMEN

Heterogeneity in progression to Alzheimer's disease (AD) poses challenges for both clinical prognosis and clinical trial implementation. Multiple AD-related subtypes have previously been identified, suggesting differences in receptivity to drug interventions. We identified early differences in preclinical AD biomarkers, assessed patterns for developing preclinical AD across the amyloid-tau-(neurodegeneration) [AT(N)] framework, and considered potential sources of difference by analysing the CSF proteome. Participants (n = 10) enrolled in longitudinal studies at the Knight Alzheimer Disease Research Center completed four or more lumbar punctures. These individuals were cognitively normal at baseline. Cerebrospinal fluid measures of amyloid-ß (Aß)42, phosphorylated tau (pTau181), and neurofilament light chain (NfL) as well as proteomics values were evaluated. Imaging biomarkers, including PET amyloid and tau, and structural MRI, were repeatedly obtained when available. Individuals were staged according to the amyloid-tau-(neurodegeneration) framework. Growth mixture modelling, an unsupervised clustering technique, identified three patterns of biomarker progression as measured by CSF pTau181 and Aß42. Two groups (AD Biomarker Positive and Intermediate AD Biomarker) showed distinct progression from normal biomarker status to having biomarkers consistent with preclinical AD. A third group (AD Biomarker Negative) did not develop abnormal AD biomarkers over time. Participants grouped by CSF trajectories were re-classified using only proteomic profiles (AUCAD Biomarker Positive versus AD Biomarker Negative = 0.857, AUCAD Biomarker Positive versus Intermediate AD Biomarkers = 0.525, AUCIntermediate AD Biomarkers versus AD Biomarker Negative = 0.952). We highlight heterogeneity in the development of AD biomarkers in cognitively normal individuals. We identified some individuals who became amyloid positive before the age of 50 years. A second group, Intermediate AD Biomarkers, developed elevated CSF ptau181 significantly before becoming amyloid positive. A third group were AD Biomarker Negative over repeated testing. Our results could influence the selection of participants for specific treatments (e.g. amyloid-reducing versus other agents) in clinical trials. CSF proteome analysis highlighted additional non-AT(N) biomarkers for potential therapies, including blood-brain barrier-, vascular-, immune-, and neuroinflammatory-related targets.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Persona de Mediana Edad , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/líquido cefalorraquídeo , Proteínas tau/líquido cefalorraquídeo , Proteoma , Proteómica , Péptidos beta-Amiloides/líquido cefalorraquídeo , Biomarcadores/líquido cefalorraquídeo , Progresión de la Enfermedad
5.
Brain ; 146(7): 2928-2943, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-36625756

RESUMEN

Neurofilament light chain, a putative measure of neuronal damage, is measurable in blood and CSF and is predictive of cognitive function in individuals with Alzheimer's disease. There has been limited prior work linking neurofilament light and functional connectivity, and no prior work has investigated neurofilament light associations with functional connectivity in autosomal dominant Alzheimer's disease. Here, we assessed relationships between blood neurofilament light, cognition, and functional connectivity in a cross-sectional sample of 106 autosomal dominant Alzheimer's disease mutation carriers and 76 non-carriers. We employed an innovative network-level enrichment analysis approach to assess connectome-wide associations with neurofilament light. Neurofilament light was positively correlated with deterioration of functional connectivity within the default mode network and negatively correlated with connectivity between default mode network and executive control networks, including the cingulo-opercular, salience, and dorsal attention networks. Further, reduced connectivity within the default mode network and between the default mode network and executive control networks was associated with reduced cognitive function. Hierarchical regression analysis revealed that neurofilament levels and functional connectivity within the default mode network and between the default mode network and the dorsal attention network explained significant variance in cognitive composite scores when controlling for age, sex, and education. A mediation analysis demonstrated that functional connectivity within the default mode network and between the default mode network and dorsal attention network partially mediated the relationship between blood neurofilament light levels and cognitive function. Our novel results indicate that blood estimates of neurofilament levels correspond to direct measurements of brain dysfunction, shedding new light on the underlying biological processes of Alzheimer's disease. Further, we demonstrate how variation within key brain systems can partially mediate the negative effects of heightened total serum neurofilament levels, suggesting potential regions for targeted interventions. Finally, our results lend further evidence that low-cost and minimally invasive blood measurements of neurofilament may be a useful marker of brain functional connectivity and cognitive decline in Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Conectoma , Humanos , Estudios Transversales , Filamentos Intermedios , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Cognición , Red Nerviosa/diagnóstico por imagen
6.
Alzheimers Dement ; 20(6): 4002-4019, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38683905

RESUMEN

INTRODUCTION: Previous approaches pursuing in vivo staging of tau pathology in Alzheimer's disease (AD) have typically relied on neuropathologically defined criteria. In using predefined systems, these studies may miss spatial deposition patterns which are informative of disease progression. METHODS: We selected discovery (n = 418) and replication (n = 132) cohorts with flortaucipir imaging. Non-negative matrix factorization (NMF) was applied to learn tau covariance patterns and develop a tau staging system. Flortaucipir components were also validated by comparison with amyloid burden, gray matter loss, and the expression of AD-related genes. RESULTS: We found eight flortaucipir covariance patterns which were reproducible and overlapped with relevant gene expression maps. Tau stages were associated with AD severity as indexed by dementia status and neuropsychological performance. Comparisons of flortaucipir uptake with amyloid and atrophy also supported our model of tau progression. DISCUSSION: Data-driven decomposition of flortaucipir uptake provides a novel framework for tau staging which complements existing systems. HIGHLIGHTS: NMF reveals patterns of tau deposition in AD. Data-driven staging of flortaucipir tracks AD severity. Learned flortaucipir patterns overlap with AD-related gene expression.


Asunto(s)
Enfermedad de Alzheimer , Carbolinas , Proteínas tau , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/metabolismo , Humanos , Carbolinas/farmacocinética , Femenino , Masculino , Anciano , Proteínas tau/metabolismo , Tomografía de Emisión de Positrones , Progresión de la Enfermedad , Encéfalo/patología , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagen , Anciano de 80 o más Años
7.
Alzheimers Dement ; 20(4): 2698-2706, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38400532

RESUMEN

INTRODUCTION: Increasing evidence suggests that amyloid reduction could serve as a plausible surrogate endpoint for clinical and cognitive efficacy. The double-blind phase 3 DIAN-TU-001 trial tested clinical and cognitive declines with increasing doses of solanezumab or gantenerumab. METHODS: We used latent class (LC) analysis on data from the Dominantly Inherited Alzheimer Network Trials Unit 001 trial to test amyloid positron emission tomography (PET) reduction as a potential surrogate biomarker. RESULTS: LC analysis categorized participants into three classes: amyloid no change, amyloid reduction, and amyloid growth, based on longitudinal amyloid Pittsburgh compound B PET standardized uptake value ratio data. The amyloid-no-change class was at an earlier disease stage for amyloid amounts and dementia. Despite similar baseline characteristics, the amyloid-reduction class exhibited reductions in the annual decline rates compared to the amyloid-growth class across multiple biomarker, clinical, and cognitive outcomes. DISCUSSION: LC analysis indicates that amyloid reduction is associated with improved clinical outcomes and supports its use as a surrogate biomarker in clinical trials. HIGHLIGHTS: We used latent class (LC) analysis to test amyloid reduction as a surrogate biomarker. Despite similar baseline characteristics, the amyloid-reduction class exhibited remarkably better outcomes compared to the amyloid-growth class across multiple measures. LC analysis proves valuable in testing amyloid reduction as a surrogate biomarker in clinical trials lacking significant treatment effects.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Amiloide , Péptidos beta-Amiloides , Proteínas Amiloidogénicas , Biomarcadores , Método Doble Ciego , Análisis de Clases Latentes , Tomografía de Emisión de Positrones/métodos
8.
Alzheimers Dement ; 20(1): 47-62, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37740921

RESUMEN

INTRODUCTION: Studies suggest distinct differences in the development, presentation, progression, and response to treatment of Alzheimer's disease (AD) between females and males. We investigated sex differences in cognition, neuroimaging, and fluid biomarkers in dominantly inherited AD (DIAD). METHODS: Three hundred twenty-five mutation carriers (55% female) and one hundred eighty-six non-carriers (58% female) of the Dominantly Inherited Alzheimer Network Observational Study were analyzed. Linear mixed models and Spearman's correlation explored cross-sectional sex differences in cognition, cerebrospinal fluid (CSF) biomarkers, Pittsburgh compound B positron emission tomography (11 C-PiB PET) and structural magnetic resonance imaging (MRI). RESULTS: Female carriers performed better than males on delayed recall and processing speed despite similar hippocampal volumes. As the disease progressed, symptomatic females revealed higher increases in MRI markers of neurodegeneration and memory impairment. PiB PET and established CSF AD markers revealed no sex differences. DISCUSSION: Our findings suggest an initial cognitive reserve in female carriers followed by a pronounced increase in neurodegeneration coupled with worse performance on delayed recall at later stages of DIAD.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Femenino , Masculino , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/líquido cefalorraquídeo , Péptidos beta-Amiloides/líquido cefalorraquídeo , Estudios Transversales , Caracteres Sexuales , Tomografía de Emisión de Positrones , Mutación/genética , Biomarcadores
9.
Alzheimers Dement ; 20(6): 4351-4365, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38666355

RESUMEN

INTRODUCTION: Amyloid beta and tau pathology are the hallmarks of sporadic Alzheimer's disease (AD) and autosomal dominant AD (ADAD). However, Lewy body pathology (LBP) is found in ≈ 50% of AD and ADAD brains. METHODS: Using an α-synuclein seed amplification assay (SAA) in cerebrospinal fluid (CSF) from asymptomatic (n = 26) and symptomatic (n = 27) ADAD mutation carriers, including 12 with known neuropathology, we investigated the timing of occurrence and prevalence of SAA positive reactivity in ADAD in vivo. RESULTS: No asymptomatic participant and only 11% (3/27) of the symptomatic patients tested SAA positive. Neuropathology revealed LBP in 10/12 cases, primarily affecting the amygdala or the olfactory areas. In the latter group, only the individual with diffuse LBP reaching the neocortex showed α-synuclein seeding activity in CSF in vivo. DISCUSSION: Results suggest that in ADAD LBP occurs later than AD pathology and often as amygdala- or olfactory-predominant LBP, for which CSF α-synuclein SAA has low sensitivity. HIGHLIGHTS: Cerebrospinal fluid (CSF) real-time quaking-induced conversion (RT-QuIC) detects misfolded α-synuclein in ≈ 10% of symptomatic autosomal dominant Alzheimer's disease (ADAD) patients. CSF RT-QuIC does not detect α-synuclein seeding activity in asymptomatic mutation carriers. Lewy body pathology (LBP) in ADAD mainly occurs as olfactory only or amygdala-predominant variants. LBP develops late in the disease course in ADAD. CSF α-synuclein RT-QuIC has low sensitivity for focal, low-burden LBP.


Asunto(s)
Enfermedad de Alzheimer , Cuerpos de Lewy , alfa-Sinucleína , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/líquido cefalorraquídeo , alfa-Sinucleína/líquido cefalorraquídeo , alfa-Sinucleína/genética , Femenino , Masculino , Persona de Mediana Edad , Cuerpos de Lewy/patología , Anciano , Mutación , Encéfalo/patología , Péptidos beta-Amiloides/líquido cefalorraquídeo , Péptidos beta-Amiloides/metabolismo , Progresión de la Enfermedad
10.
Alzheimers Dement ; 20(4): 2680-2697, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38380882

RESUMEN

INTRODUCTION: Amyloidosis, including cerebral amyloid angiopathy, and markers of small vessel disease (SVD) vary across dominantly inherited Alzheimer's disease (DIAD) presenilin-1 (PSEN1) mutation carriers. We investigated how mutation position relative to codon 200 (pre-/postcodon 200) influences these pathologic features and dementia at different stages. METHODS: Individuals from families with known PSEN1 mutations (n = 393) underwent neuroimaging and clinical assessments. We cross-sectionally evaluated regional Pittsburgh compound B-positron emission tomography uptake, magnetic resonance imaging markers of SVD (diffusion tensor imaging-based white matter injury, white matter hyperintensity volumes, and microhemorrhages), and cognition. RESULTS: Postcodon 200 carriers had lower amyloid burden in all regions but worse markers of SVD and worse Clinical Dementia Rating® scores compared to precodon 200 carriers as a function of estimated years to symptom onset. Markers of SVD partially mediated the mutation position effects on clinical measures. DISCUSSION: We demonstrated the genotypic variability behind spatiotemporal amyloidosis, SVD, and clinical presentation in DIAD, which may inform patient prognosis and clinical trials. HIGHLIGHTS: Mutation position influences Aß burden, SVD, and dementia. PSEN1 pre-200 group had stronger associations between Aß burden and disease stage. PSEN1 post-200 group had stronger associations between SVD markers and disease stage. PSEN1 post-200 group had worse dementia score than pre-200 in late disease stage. Diffusion tensor imaging-based SVD markers mediated mutation position effects on dementia in the late stage.


Asunto(s)
Enfermedad de Alzheimer , Amiloidosis , Enfermedades de los Pequeños Vasos Cerebrales , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Enfermedades de los Pequeños Vasos Cerebrales/diagnóstico por imagen , Enfermedades de los Pequeños Vasos Cerebrales/genética , Enfermedades de los Pequeños Vasos Cerebrales/complicaciones , Imagen de Difusión Tensora , Imagen por Resonancia Magnética , Mutación/genética , Presenilina-1/genética
11.
Hum Brain Mapp ; 44(18): 6375-6387, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37867465

RESUMEN

Carriers of mutations responsible for dominantly inherited Alzheimer disease provide a unique opportunity to study potential imaging biomarkers. Biomarkers based on routinely acquired clinical MR images, could supplement the extant invasive or logistically challenging) biomarker studies. We used 1104 longitudinal MR, 324 amyloid beta, and 87 tau positron emission tomography imaging sessions from 525 participants enrolled in the Dominantly Inherited Alzheimer Network Observational Study to extract novel imaging metrics representing the mean (µ) and standard deviation (σ) of standardized image intensities of T1-weighted and Fluid attenuated inversion recovery (FLAIR) MR scans. There was an exponential decrease in FLAIR-µ in mutation carriers and an increase in FLAIR and T1 signal heterogeneity (T1-σ and FLAIR-σ) as participants approached the symptom onset in both supramarginal, the right postcentral and right superior temporal gyri as well as both caudate nuclei, putamina, thalami, and amygdalae. After controlling for the effect of regional atrophy, FLAIR-µ decreased and T1-σ and FLAIR-σ increased with increasing amyloid beta and tau deposition in numerous cortical regions. In symptomatic mutation carriers and independent of the effect of regional atrophy, tau pathology demonstrated a stronger relationship with image intensity metrics, compared with amyloid pathology. We propose novel MR imaging intensity-based metrics using standard clinical T1 and FLAIR images which strongly associates with the progression of pathology in dominantly inherited Alzheimer disease. We suggest that tau pathology may be a key driver of the observed changes in this cohort of patients.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/complicaciones , Péptidos beta-Amiloides , Imagen por Resonancia Magnética/métodos , Tomografía de Emisión de Positrones , Biomarcadores , Atrofia , Proteínas tau
12.
Ann Neurol ; 92(5): 729-744, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36151869

RESUMEN

OBJECTIVE: To determine the characteristics of participants with amyloid-related imaging abnormalities (ARIA) in a trial of gantenerumab or solanezumab in dominantly inherited Alzheimer disease (DIAD). METHODS: 142 DIAD mutation carriers received either gantenerumab SC (n = 52), solanezumab IV (n = 50), or placebo (n = 40). Participants underwent assessments with the Clinical Dementia Rating® (CDR®), neuropsychological testing, CSF biomarkers, ß-amyloid positron emission tomography (PET), and magnetic resonance imaging (MRI) to monitor ARIA. Cross-sectional and longitudinal analyses evaluated potential ARIA-related risk factors. RESULTS: Eleven participants developed ARIA-E, including 3 with mild symptoms. No ARIA-E was reported under solanezumab while gantenerumab was associated with ARIA-E compared to placebo (odds ratio [OR] = 9.1, confidence interval [CI][1.2, 412.3]; p = 0.021). Under gantenerumab, APOE-ɛ4 carriers were more likely to develop ARIA-E (OR = 5.0, CI[1.0, 30.4]; p = 0.055), as were individuals with microhemorrhage at baseline (OR = 13.7, CI[1.2, 163.2]; p = 0.039). No ARIA-E was observed at the initial 225 mg/month gantenerumab dose, and most cases were observed at doses >675 mg. At first ARIA-E occurrence, all ARIA-E participants were amyloid-PET+, 60% were CDR >0, 60% were past their estimated year to symptom onset, and 60% had also incident ARIA-H. Most ARIA-E radiologically resolved after dose adjustment and developing ARIA-E did not significantly increase odds of trial discontinuation. ARIA-E was more frequently observed in the occipital lobe (90%). ARIA-E severity was associated with age at time of ARIA-E. INTERPRETATION: In DIAD, solanezumab was not associated with ARIA. Gantenerumab dose over 225 mg increased ARIA-E risk, with additional risk for individuals APOE-ɛ4(+) or with microhemorrhage. ARIA-E was reversible on MRI in most cases, generally asymptomatic, without additional risk for trial discontinuation. ANN NEUROL 2022;92:729-744.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Estudios Transversales , Péptidos beta-Amiloides , Amiloide , Biomarcadores , Apolipoproteínas E
13.
J Int Neuropsychol Soc ; 29(5): 459-471, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36062528

RESUMEN

OBJECTIVE: Smartphones have the potential for capturing subtle changes in cognition that characterize preclinical Alzheimer's disease (AD) in older adults. The Ambulatory Research in Cognition (ARC) smartphone application is based on principles from ecological momentary assessment (EMA) and administers brief tests of associative memory, processing speed, and working memory up to 4 times per day over 7 consecutive days. ARC was designed to be administered unsupervised using participants' personal devices in their everyday environments. METHODS: We evaluated the reliability and validity of ARC in a sample of 268 cognitively normal older adults (ages 65-97 years) and 22 individuals with very mild dementia (ages 61-88 years). Participants completed at least one 7-day cycle of ARC testing and conventional cognitive assessments; most also completed cerebrospinal fluid, amyloid and tau positron emission tomography, and structural magnetic resonance imaging studies. RESULTS: First, ARC tasks were reliable as between-person reliability across the 7-day cycle and test-retest reliabilities at 6-month and 1-year follow-ups all exceeded 0.85. Second, ARC demonstrated construct validity as evidenced by correlations with conventional cognitive measures (r = 0.53 between composite scores). Third, ARC measures correlated with AD biomarker burden at baseline to a similar degree as conventional cognitive measures. Finally, the intensive 7-day cycle indicated that ARC was feasible (86.50% approached chose to enroll), well tolerated (80.42% adherence, 4.83% dropout), and was rated favorably by older adult participants. CONCLUSIONS: Overall, the results suggest that ARC is reliable and valid and represents a feasible tool for assessing cognitive changes associated with the earliest stages of AD.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Anciano , Enfermedad de Alzheimer/psicología , Teléfono Inteligente , Reproducibilidad de los Resultados , Cognición , Biomarcadores/líquido cefalorraquídeo , Tomografía de Emisión de Positrones , Disfunción Cognitiva/psicología , Péptidos beta-Amiloides/líquido cefalorraquídeo , Proteínas tau/líquido cefalorraquídeo
14.
Brain ; 145(12): 4506-4518, 2022 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-35867858

RESUMEN

Alzheimer's disease biomarkers are widely accepted as surrogate markers of underlying neuropathological changes. However, few studies have evaluated whether preclinical Alzheimer's disease biomarkers predict Alzheimer's neuropathology at autopsy. We sought to determine whether amyloid PET imaging or CSF biomarkers accurately predict cognitive outcomes and Alzheimer's disease neuropathological findings. This study included 720 participants, 42-91 years of age, who were enrolled in longitudinal studies of memory and aging in the Washington University Knight Alzheimer Disease Research Center and were cognitively normal at baseline, underwent amyloid PET imaging and/or CSF collection within 1 year of baseline clinical assessment, and had subsequent clinical follow-up. Cognitive status was assessed longitudinally by Clinical Dementia Rating®. Biomarker status was assessed using predefined cut-offs for amyloid PET imaging or CSF p-tau181/amyloid-ß42. Subsequently, 57 participants died and underwent neuropathologic examination. Alzheimer's disease neuropathological changes were assessed using standard criteria. We assessed the predictive value of Alzheimer's disease biomarker status on progression to cognitive impairment and for presence of Alzheimer's disease neuropathological changes. Among cognitively normal participants with positive biomarkers, 34.4% developed cognitive impairment (Clinical Dementia Rating > 0) as compared to 8.4% of those with negative biomarkers. Cox proportional hazards modelling indicated that preclinical Alzheimer's disease biomarker status, APOE ɛ4 carrier status, polygenic risk score and centred age influenced risk of developing cognitive impairment. Among autopsied participants, 90.9% of biomarker-positive participants and 8.6% of biomarker-negative participants had Alzheimer's disease neuropathological changes. Sensitivity was 87.0%, specificity 94.1%, positive predictive value 90.9% and negative predictive value 91.4% for detection of Alzheimer's disease neuropathological changes by preclinical biomarkers. Single CSF and amyloid PET baseline biomarkers were also predictive of Alzheimer's disease neuropathological changes, as well as Thal phase and Braak stage of pathology at autopsy. Biomarker-negative participants who developed cognitive impairment were more likely to exhibit non-Alzheimer's disease pathology at autopsy. The detection of preclinical Alzheimer's disease biomarkers is strongly predictive of future cognitive impairment and accurately predicts presence of Alzheimer's disease neuropathology at autopsy.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides , Disfunción Cognitiva/psicología , Tomografía de Emisión de Positrones , Amiloide , Biomarcadores , Proteínas Amiloidogénicas , Cognición , Proteínas tau , Progresión de la Enfermedad
15.
Brain ; 145(10): 3594-3607, 2022 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-35580594

RESUMEN

The extent to which the pathophysiology of autosomal dominant Alzheimer's disease corresponds to the pathophysiology of 'sporadic' late onset Alzheimer's disease is unknown, thus limiting the extrapolation of study findings and clinical trial results in autosomal dominant Alzheimer's disease to late onset Alzheimer's disease. We compared brain MRI and amyloid PET data, as well as CSF concentrations of amyloid-ß42, amyloid-ß40, tau and tau phosphorylated at position 181, in 292 carriers of pathogenic variants for Alzheimer's disease from the Dominantly Inherited Alzheimer Network, with corresponding data from 559 participants from the Alzheimer's Disease Neuroimaging Initiative. Imaging data and CSF samples were reprocessed as appropriate to guarantee uniform pipelines and assays. Data analyses yielded rates of change before and after symptomatic onset of Alzheimer's disease, allowing the alignment of the ∼30-year age difference between the cohorts on a clinically meaningful anchor point, namely the participant age at symptomatic onset. Biomarker profiles were similar for both autosomal dominant Alzheimer's disease and late onset Alzheimer's disease. Both groups demonstrated accelerated rates of decline in cognitive performance and in regional brain volume loss after symptomatic onset. Although amyloid burden accumulation as determined by PET was greater after symptomatic onset in autosomal dominant Alzheimer's disease than in late onset Alzheimer's disease participants, CSF assays of amyloid-ß42, amyloid-ß40, tau and p-tau181 were largely overlapping in both groups. Rates of change in cognitive performance and hippocampal volume loss after symptomatic onset were more aggressive for autosomal dominant Alzheimer's disease participants. These findings suggest a similar pathophysiology of autosomal dominant Alzheimer's disease and late onset Alzheimer's disease, supporting a shared pathobiological construct.


Asunto(s)
Enfermedad de Alzheimer , Amiloidosis , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides , Imagen por Resonancia Magnética/métodos , Biomarcadores
16.
Alzheimers Dement ; 19(7): 2923-2932, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36640138

RESUMEN

BACKGROUND: Comparisons of late-onset Alzheimer's disease (LOAD) and autosomal dominant AD (ADAD) are confounded by age. METHODS: We compared biomarkers from cerebrospinal fluid (CSF), magnetic resonance imaging, and amyloid imaging with Pittsburgh Compound-B (PiB) across four groups of 387 cognitively normal participants, 42 to 65 years of age, in the Dominantly Inherited Alzheimer Network (DIAN) and the Adult Children Study (ACS) of LOAD: DIAN mutation carriers (MCs) and non-carriers (NON-MCs), and ACS participants with a positive (FH+) and negative (FH-) family history of LOAD. RESULTS: At baseline, MCs had the lowest age-adjusted level of CSF Aß42 and the highest levels of total and phosphorylated tau-181, and PiB uptake. Longitudinally, MC had similar increase in PiB uptake to FH+, but drastically faster decline in hippocampal volume than others, and was the only group showing cognitive decline. DISCUSSION: Preclinical ADAD and LOAD share many biomarker signatures, but cross-sectional and longitudinal differences may exist.


Asunto(s)
Enfermedad de Alzheimer , Adulto , Humanos , Persona de Mediana Edad , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/líquido cefalorraquídeo , Péptidos beta-Amiloides/líquido cefalorraquídeo , Biomarcadores/líquido cefalorraquídeo , Cognición , Estudios Transversales , Padres , Tomografía de Emisión de Positrones
17.
Alzheimers Dement ; 19(4): 1452-1465, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36178120

RESUMEN

INTRODUCTION: As Alzheimer's disease (AD) biomarkers rapidly develop, tools are needed that accurately and effectively communicate risk of AD dementia. METHODS: We analyzed longitudinal data from >10,000 cognitively unimpaired older adults. Five-year risk of AD dementia was modeled using survival analysis. RESULTS: A demographic model was developed and validated on independent data with area under the receiver operating characteristic curve (AUC) for 5-year prediction of AD dementia of 0.79. Clinical and cognitive variables (AUC = 0.79), and apolipoprotein E genotype (AUC = 0.76) were added to the demographic model. We then incorporated the risk computed from the demographic model with hazard ratios computed from independent data for amyloid positron emission tomography status and magnetic resonance imaging hippocampal volume (AUC = 0.84), and for plasma amyloid beta (Aß)42/Aß40 (AUC = 0.82). DISCUSSION: An adaptive tool was developed and validated to compute absolute risks of AD dementia. This approach allows for improved accuracy and communication of AD risk among cognitively unimpaired older adults.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Anciano , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides , Biomarcadores , Tomografía de Emisión de Positrones , Proteínas tau
18.
Alzheimers Dement ; 19(7): 2790-2804, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36576155

RESUMEN

BACKGROUND: Glial fibrillary acidic protein (GFAP) is a promising candidate blood-based biomarker for Alzheimer's disease (AD) diagnosis and prognostication. The timing of its disease-associated changes, its clinical correlates, and biofluid-type dependency will influence its clinical utility. METHODS: We evaluated plasma, serum, and cerebrospinal fluid (CSF) GFAP in families with autosomal dominant AD (ADAD), leveraging the predictable age at symptom onset to determine changes by stage of disease. RESULTS: Plasma GFAP elevations appear a decade before expected symptom onset, after amyloid beta (Aß) accumulation and prior to neurodegeneration and cognitive decline. Plasma GFAP distinguished Aß-positive from Aß-negative ADAD participants and showed a stronger relationship with Aß load in asymptomatic than symptomatic ADAD. Higher plasma GFAP was associated with the degree and rate of neurodegeneration and cognitive impairment. Serum GFAP showed similar relationships, but these were less pronounced for CSF GFAP. CONCLUSION: Our findings support a role for plasma GFAP as a clinical biomarker of Aß-related astrocyte reactivity that is associated with cognitive decline and neurodegeneration. HIGHLIGHTS: Plasma glial fibrillary acidic protein (GFAP) elevations appear a decade before expected symptom onset in autosomal dominant Alzheimer's disease (ADAD). Plasma GFAP was associated to amyloid positivity in asymptomatic ADAD. Plasma GFAP increased with clinical severity and predicted disease progression. Plasma and serum GFAP carried similar information in ADAD, while cerebrospinal fluid GFAP did not.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Biomarcadores/líquido cefalorraquídeo , Cognición , Proteína Ácida Fibrilar de la Glía , Tomografía de Emisión de Positrones , Proteínas tau/líquido cefalorraquídeo
19.
Alzheimers Dement ; 19(1): 274-284, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35362200

RESUMEN

INTRODUCTION: As the number of biomarkers used to study Alzheimer's disease (AD) continues to increase, it is important to understand the utility of any given biomarker, as well as what additional information a biomarker provides when compared to others. METHODS: We used hierarchical clustering to group 19 cross-sectional biomarkers in autosomal dominant AD. Feature selection identified biomarkers that were the strongest predictors of mutation status and estimated years from symptom onset (EYO). Biomarkers identified included clinical assessments, neuroimaging, cerebrospinal fluid amyloid, and tau, and emerging biomarkers of neuronal integrity and inflammation. RESULTS: Three primary clusters were identified: neurodegeneration, amyloid/tau, and emerging biomarkers. Feature selection identified amyloid and tau measures as the primary predictors of mutation status and EYO. Emerging biomarkers of neuronal integrity and inflammation were relatively weak predictors. DISCUSSION: These results provide novel insight into our understanding of the relationships among biomarkers and the staging of biomarkers based on disease progression.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/diagnóstico , Péptidos beta-Amiloides/líquido cefalorraquídeo , Proteínas Amiloidogénicas , Biomarcadores/líquido cefalorraquídeo , Estudios Transversales , Inflamación , Proteínas tau/genética , Proteínas tau/líquido cefalorraquídeo
20.
Neuroimage ; 256: 119228, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35452806

RESUMEN

"Brain-predicted age" quantifies apparent brain age compared to normative neuroimaging trajectories. Advanced brain-predicted age has been well established in symptomatic Alzheimer disease (AD), but is underexplored in preclinical AD. Prior brain-predicted age studies have typically used structural MRI, but resting-state functional connectivity (FC) remains underexplored. Our model predicted age from FC in 391 cognitively normal, amyloid-negative controls (ages 18-89). We applied the trained model to 145 amyloid-negative, 151 preclinical AD, and 156 symptomatic AD participants to test group differences. The model accurately predicted age in the training set. FC-predicted brain age gaps (FC-BAG) were significantly older in symptomatic AD and significantly younger in preclinical AD compared to controls. There was minimal correspondence between networks predictive of age and AD. Elevated FC-BAG may reflect network disruption during symptomatic AD. Reduced FC-BAG in preclinical AD was opposite to the expected direction, and may reflect a biphasic response to preclinical AD pathology or may be driven by inconsistency between age-related vs. AD-related networks. Overall, FC-predicted brain age may be a sensitive AD biomarker.


Asunto(s)
Enfermedad de Alzheimer , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/patología , Biomarcadores , Encéfalo/fisiología , Humanos , Imagen por Resonancia Magnética/métodos , Persona de Mediana Edad , Neuroimagen , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA