Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Molecules ; 28(14)2023 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-37513313

RESUMEN

Formaldehyde (FA) is a toxic compound and a human carcinogen. Regulating FA-releasing substances in commercial goods is a growing and interesting topic: worldwide production sectors, like food industries, textiles, wood manufacture, and cosmetics, are involved. Thus, there is a need for sensitive, economical, and specific FA monitoring tools. Solid-phase microextraction (SPME), with O-(2,3,4,5,6-pentafluorobenzyl)-hydroxylamine (PFBHA) on-sample derivatization and gas chromatography, is proposed for FA monitoring of real-life samples. This study reports the use of polydimethylsiloxane (PDMS) as a sorbent phase combined with innovative commercial methods, such as multiple SPME (MSPME) and cooling-assisted SPME, for FA determination. Critical steps, such as extraction and sampling, were evaluated in method development. The derivatization was performed at 60 °C for 30 min, followed by 15 min sampling at 10 °C, in three cycles (SPME Arrow) or six cycles (SPME). The sensitivity was satisfactory for the method's purposes (LOD-LOQ at 11-36 ng L-1, and 8-26 ng L-1, for SPME and SPME Arrow, respectively). The method's linearity ranges from the lower LOQ at trace level (ng L-1) to the upper LOQ at 40 mg L-1. The precision range was 5.7-10.2% and 4.8-9.6% and the accuracy was 97.4% and 96.3% for SPME and SPME Arrow, respectively. The cooling MSPME set-up applied to real commercial goods provided results of quality comparable to previously published data.

2.
Waste Manag Res ; 40(8): 1311-1321, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34865591

RESUMEN

The present research investigates the degradation rate of bioplastics under various composting conditions, including suboptimal ones. Lab-scale tests were carried out setting three variables: temperature (37°C-58°C), humidity (30%-60%) and duration of the thermophilic and the maturation phases (15-60 days). The composting tests were carried out following modified guideline ISO 20200:2015 and lasted for 60 days. Bioplastics in the synthetic waste matrix consisted of Mater-Bi® film biobags and PLA rigid teaspoons. A kinetic study was performed, resulting in faster degradation rates for film bioplastics (first-order kinetics with k = 0.0850-0.1663 d-1) than for rigid (0.0018-0.0136 d-1). Moreover, film bioplastics reached a complete degradation within the 60 days of the test. Concerning the rigid products, 90% degradation would be achieved in 2-3 years for mesophilic conditions. Finally, in the undersieve of 0.5 mm some microplastics were identified with the ImageJ software, mainly relatable to rigid (PLA) bioplastics. Overall, the results disclosed that the combination of mesophilic temperatures and absence of moistening slowed down both the degradation and the disintegration process of bioplastics.


Asunto(s)
Compostaje , Biodegradación Ambiental , Cinética , Plásticos , Poliésteres , Suelo
3.
Waste Manag Res ; 39(7): 956-965, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33250042

RESUMEN

The present study develops a multi-step methodology for identification and quantification of microplastics and micro-bioplastics (together called in the current work micro-(bio)plastics) in sludge. In previous studies, different methods for the extraction of microplastics were devised for traditional plastics, while the current research tested the methodology on starch-based micro-bioplastics of 0.1-2 mm size. Compostable bioplastics are expected to enter the anaerobic or aerobic biological treatments that lead to end-products applicable in agriculture; some critical conditions of treatments (e.g. low temperature and moisture) can slow down the degradation process and be responsible for the presence of microplastics in the end-product. The methodology consists of an initial oxidation step, with hydrogen peroxide 35% concentrated to clear the sludge and remove the organic fraction, followed by a combination of flotation with sodium chloride and observation of the residues under a fluorescence microscope using a green filter. The workflow revealed an efficacy of removal from 94% to 100% and from 92% to 96% for plastic fragments, 0.5-2 mm and 0.1-0.5 mm size, respectively. The methodology was then applied to samples of food waste pulp harvested after a shredding pre-treatment in an anaerobic digestion (AD) plant in Italy, where polyethylene, starch-based Mater-Bi® and cellophane microplastics were recovered in amounts of 9 ± 1.3/10 g <2 mm and 4.8 ± 1.2/10 g ⩾2 mm. The study highlights the need to lower the threshold size for the quantification of plastics in organic fertilizers, which is currently set by legislations at 2 mm, by improving the background knowledge about the fate of the micro-(bio)plastics in biological treatments for the organic waste.


Asunto(s)
Eliminación de Residuos , Contaminantes Químicos del Agua , Alimentos , Italia , Plásticos , Aguas del Alcantarillado , Eliminación de Residuos Líquidos
4.
J Environ Manage ; 261: 110219, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32148289

RESUMEN

Emission of N2O represents an increasing concern in wastewater treatment, in particular for its large contribution to the plant's carbon footprint (CFP). In view of the potential introduction of more stringent regulations regarding wastewater treatment plants' CFP, there is a growing need for advanced monitoring with online implementation of mitigation strategies for N2O emissions. Mechanistic kinetic modelling in full-scale applications, are often represented by a very detailed representation of the biological mechanisms resulting in an elevated uncertainty on the many parameters used while limited by a poor representation of hydrodynamics. This is particularly true for current N2O kinetic models. In this paper, a possible full-scale implementation of a data mining approach linking plant-specific dynamics to N2O production is proposed. A data mining approach was tested on full-scale data along with different clustering techniques to identify process criticalities. The algorithm was designed to provide an applicable solution for full-scale plants' control logics aimed at online N2O emission mitigation. Results show the ability of the algorithm to isolate specific N2O emission pathways, and highlight possible solutions towards emission control.


Asunto(s)
Óxido Nitroso , Eliminación de Residuos Líquidos , Huella de Carbono , Análisis por Conglomerados , Aguas Residuales
5.
Water Sci Technol ; 82(11): 2331-2343, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33339788

RESUMEN

Hydrothermal carbonization can play an innovative role in sewage sludge (SS) treatment and valorization, as well as in phosphorus recovery. In this study, leaching tests using nitric acid were performed on hydrochar from SS and the influence of pH (1-3.5), leaching time (30-240 min), and solid/liquid (S/L) ratio (5-20 wt%) was analyzed and optimized according to the Design of Experiments method, under the Response Surface Methodology approach. The highest phosphorus extraction yield (59.57%) was achieved at the lowest pH and the lowest S/L ratio, while an increase in temperature from 20 to 60 °C negatively affected the phosphorus recovery. Quadratic models, with the addition of semi-cubic terms, were found to best represent both phosphorus yield and ash content of the hydrochar after leaching. As observed by 3-dimensional surface responses, phosphorus yield increases as the pH decreases. The pH is the factor that most influences this response, while time has little influence. At pH 1, the yield increases as the S/L ratio decreases, while the S/L ratio only slightly affects the response at pH 3.5. At an S/L ratio of 12.5%, multi-objective optimization indicates that pH 1 and a leaching time of 135 min are the parameters that allow both maximum phosphorus yield and minimum ash content.


Asunto(s)
Fósforo , Aguas del Alcantarillado , Temperatura
6.
Sensors (Basel) ; 19(15)2019 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-31382530

RESUMEN

Moving platforms were introduced in the field of the study of posturography since the 1970s. Commercial platforms have some limits: a limited number of degrees of freedom, pre-configured protocols, and, usually, they are expensive. In order to overcome these limits, we developed a robotic platform: Dynamic Oriented Rehabilitative Integrated System (DORIS). We aimed at realizing a versatile solution that can be applied both for research purposes but also for personalizing the training of equilibrium and gait. We reached these goals by means of a Stewart platform that was realized with linear actuators and a supporting plate. Each actuator is provided by an ad hoc built monoaxial load cell. Position control allows a large range of movements and load cells measure the reactive force applied by the subject. Transmission Control Protocol/Internet Protocol (TCP/IP) guarantees the communication between the platform and other systems. We integrated DORIS with a motion analysis system, an electromyography (EMG) system, and a virtual reality environment (VR). This integration and the custom design of the platform offer the opportunity to manipulate the available information of the subject under analysis, which uses visual, vestibular, and plantar feet pressure inputs. The full access to the human movements and to the dynamic interaction is a further benefit for the identification of innovative solutions for research and physical rehabilitation purposes in a field that is widely investigated but still open.

7.
J Environ Manage ; 249: 109436, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31454637

RESUMEN

The objective of this paper is to find the optimum solid retention time (SRT) of a wastewater treatment plant (WWTP), which minimizes operating costs, using a modeling approach with WEST software by MIKE DHI®. For the determination of the kinetic and stoichiometric parameters (used for the correct calibration of the model implemented), respirometric and kinetic batch tests were carried out. Each Oxidation ditch was modeled by a sequence of four aerated activated sludge units (ASUs) and four anoxic ASUs with recirculation. The model is able to simulate the separation efficiency of the secondary settler, which is generally quite low: in fact, the industrial origin of the wastewater induces the formation of small flocs, the dimensions of which can be further reduced by the presence of surface aerators. The nitrification/denitrification process is also accurately predicted. Using data obtained from the model, mass balances at the steady state for COD and N were made and compared to the ones obtained using measured data. After calibration and validation of the model, steady-state simulations were carried out by increasing and decreasing the SRT of the system under two different operational conditions used by the managing company and by evaluating the costs related to the water treatment line and the sludge treatment line for each scenario. It is interesting to note how the total costs are lower in summer than in winter (7.2 €cent/m3 in summer and 8.7 €cent/m3 in winter, in scenario 0). In general, the increase in the SRT led to a decrease in the total management costs. In fact, differences between scenario 0 and the scenario with the lowest total treatment costs (corresponding to an SRT of 11.4 d in winter and 10.0 d in summer) could give rise to total savings of about 44·000€/year in summer and 93·000€/year in winter.


Asunto(s)
Aguas Residuales , Purificación del Agua , Reactores Biológicos , Nitrificación , Aguas del Alcantarillado , Eliminación de Residuos Líquidos
8.
Water Sci Technol ; 79(1): 73-83, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30816864

RESUMEN

The choice of the spatial submodel of a water resource recovery facility (WRRF) model should be one of the primary concerns in WRRF modelling. However, currently used mechanistic models are limited by an over-simplified representation of local conditions. This is illustrated by the general difficulties in calibrating the latest N2O models and the large variability in parameter values reported in the literature. The use of compartmental model (CM) developed on the basis of accurate hydrodynamic studies using computational fluid dynamics (CFD) can take into account local conditions and recirculation patterns in the activated sludge tanks that are important with respect to the modelling objective. The conventional tanks in series (TIS) configuration does not allow this. The aim of the present work is to compare the capabilities of two model layouts (CM and TIS) in defining a realistic domain of parameter values representing the same full-scale plant. A model performance evaluation method is proposed to identify the good operational domain of each parameter in the two layouts. Already when evaluating for steady state, the CM was found to provide better defined parameter ranges than TIS. Dynamic simulations further confirmed the CM's capability to work in a more realistic parameter domain, avoiding unnecessary calibration to compensate for flaws in the spatial submodel.


Asunto(s)
Hidrodinámica , Modelos Químicos , Dióxido de Nitrógeno/análisis , Aguas del Alcantarillado , Eliminación de Residuos Líquidos/métodos , Abastecimiento de Agua/estadística & datos numéricos , Conservación de los Recursos Hídricos/métodos , Eliminación de Residuos Líquidos/estadística & datos numéricos , Recursos Hídricos
9.
Waste Manag Res ; 37(10): 959-975, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31218932

RESUMEN

Bioplastics are emerging on the market as sustainable materials which rise to the challenge to improve the lifecycle of plastics from the perspective of the circular economy. The article aims at providing a critical insight of research studies carried out in the last 20 years on the degradation of bioplastics under aerobic composting and anaerobic digestion conditions. It mainly focuses on the various and different methodologies which have been proposed and developed to monitor the process of biodegradation of several bioplastic materials: CO2 and CH4 measurements, mass loss and disintegration degree, spectroscopy, visual analysis and scanning electron microscopy. Moreover, across the wide range of studies, the process conditions of the experimental setup, such as temperature, test duration and waste composition, often vary from author to author and in accordance with the international standard followed for the test. The different approaches, in terms of process conditions and monitoring methodologies, are pointed out in the review and highlighted to find significant correlations between the results obtained and the experimental procedures. These observed correlations allow critical considerations to be reached about the efficiency of the methodologies and the influence of the main abiotic factors on the process of biodegradation of bioplastics.


Asunto(s)
Compostaje , Eliminación de Residuos , Anaerobiosis , Biodegradación Ambiental , Plásticos
10.
Water Sci Technol ; 77(3-4): 880-890, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29488951

RESUMEN

The large global warming potential of nitrous oxide (N2O) is currently of general concern for the water industry, especially in view of a new regulatory framework concerning the carbon footprint of water resource recovery facilities (WRRFs). N2O can be generated through different biological pathways and from different treatment steps of a WRRF. The use of generic emission factors (EF) for quantifying the emissions of WRRFs is discouraged. This is due to the number of different factors that can affect how much, when and where N2O is emitted from WRRFs. The spatial and temporal variability of three WRRFs in Europe using comparable technologies is presented. An economically feasible and user-friendly method for accounting for the contribution of anoxic zones via direct gas emission measurements was proven. The investigation provided new insights into the contribution from the anoxic zones versus the aerobic zones of biological WRRF tanks and proved the unsuitability of the use of a single EF for the three WRRFs. Dedicated campaigns for N2O emissions assessment are to be advised. However, similarities in the EF magnitude can be found considering treatment strategy and influent water composition.


Asunto(s)
Contaminantes Atmosféricos/análisis , Óxido Nitroso/análisis , Eliminación de Residuos Líquidos , Huella de Carbono , Monitoreo del Ambiente , Europa (Continente) , Aguas del Alcantarillado , Recursos Hídricos
11.
Water Sci Technol ; 75(3-4): 507-517, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28192345

RESUMEN

Aeration is an essential component of aerobic biological wastewater treatment and is the largest energy consumer at most water resource recovery facilities. Most modelling studies neglect the inherent complexity of the aeration systems used. Typically, the blowers, air piping, and diffusers are not modelled in detail, completely mixed reactors in a series are used to represent plug-flow reactors, and empirical correlations are used to describe the impact of operating conditions on bubble formation and transport, and oxygen transfer from the bubbles to the bulk liquid. However, the mechanisms involved are very complex in nature and require significant research efforts. This contribution highlights why and where there is a need for more detail in the different aspects of the aeration system and compiles recent efforts to develop physical models of the entire aeration system (blower, valves, air piping and diffusers), as well as adding rigour to the oxygen transfer efficiency modelling (impact of viscosity, bubble size distribution, shear and hydrodynamics). As a result of these model extensions, more realistic predictions of dissolved oxygen profiles and energy consumption have been achieved. Finally, the current needs for further model development are highlighted.


Asunto(s)
Modelos Teóricos , Oxígeno/análisis , Aguas Residuales , Purificación del Agua/instrumentación , Purificación del Agua/métodos , Difusión , Hidrodinámica , Viscosidad , Aguas Residuales/química
12.
Environ Technol ; 36(1-4): 538-45, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25351603

RESUMEN

The potential of several fungi and their synergy with bacterial biomasses were evaluated as a solution for the removal of 2-naphthalensulphonic acid polymers (2-NSAPs) from petrochemical wastewater, characterized by a chemical oxygen demand (COD) greater than 9000 mg/L. The ability of fungi to grow on 2-NSAP mixtures was preliminarily investigated using a solid medium, and then the action of the selected strains, both in suspended and immobilized form, was evaluated in terms of degradation, depolymerization, sorption and an increase in biodegradability of 2-NSAP. Among the 25 fungi evaluated two, in particular, Bjerkandera adusta and Pleurotus ostreatus, have been found to significantly depolymerize 2-NSAP yielding to the corresponding monomer (2-naphthalenesulphonic acid, 2-NSA), which has been further degraded by a bacterial consortia selected in a wastewater treatment plant (WWTP). The fungal treatment alone was able to reduce the COD value up to 44%, while activated sludge removed only 9% of the initial COD. In addition, the combined treatment (fungi and bacteria) allowed an increase in the COD removal up to 62%.


Asunto(s)
Bacterias/metabolismo , Hongos/metabolismo , Consorcios Microbianos/fisiología , Naftalenosulfonatos/metabolismo , Contaminantes Químicos del Agua/metabolismo , Purificación del Agua/métodos , Biodegradación Ambiental , Estudios de Factibilidad , Naftalenosulfonatos/aislamiento & purificación , Aguas Residuales/microbiología , Contaminantes Químicos del Agua/aislamiento & purificación
13.
Water Sci Technol ; 70(1): 8-14, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25026573

RESUMEN

This paper reports the results of a series of off-gas tests aimed at monitoring the evolution of the oxygen transfer efficiency in an urban wastewater treatment plant (3,500 population equivalent) located in Tuscany (Italy). The tests were conducted over a 2-year period starting with the testing of the aeration system. It was found that in the absence of membrane-panel cleaning operations, the oxygen transfer efficiency under standard conditions in process water (αSOTE) dropped from 18 to 9.5% in 2 years. This gives rise to a 40% increase in the wastewater treatment plant annual energy costs. The on-site chemical cleaning of the diffusers allowed for an almost total recovery of the transfer efficiency (αSOTE equal to 16%). The use of the off-gas method for monitoring the oxygen transfer efficiency over time is therefore essential for enabling correct planning of the cleaning operations of the diffusers and for cutting the energy consumption and operating costs of the aeration system.


Asunto(s)
Oxígeno/química , Eliminación de Residuos Líquidos/métodos , Purificación del Agua/métodos , Ciudades , Difusión , Diseño de Equipo , Gases , Aguas del Alcantarillado , Temperatura , Aguas Residuales , Agua , Contaminantes Químicos del Agua
14.
Membranes (Basel) ; 14(5)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38786949

RESUMEN

This paper describes a case study involving a revamping of a full-scale membrane bioreactor that treats landfill leachate and other liquid wastes. The main change was the introduction of nitritation/denitritation in alternating cycles instead of the classic denitrification/nitrification process, together with the installation of fine bubble diffusers, a reduction in the volume of the biological compartment, and an increase in the equalization volume. The most significant results were obtained for the biological compartment, with a decrease in the specific energy consumption of 46.6%. At the same time, the removal efficiency of COD, BOD, and TN substantially remained the same before and after plant revamping, while the removal efficiency of TP increased over the years, reaching an average value of almost 71%. Regarding the ultrafiltration unit, the specific flux (or permeability) was characterized by an increasing trend. At the same time, the specific energy consumption of this section decreased by 9.4%. These results led to the conclusion that the changes introduced with the revamp led to a more stable process, a reduction in membrane fouling, and important energy savings.

15.
Water Sci Technol ; 68(4): 870-8, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23985518

RESUMEN

The goal of this paper is to show the effect of primary sedimentation on the chemical oxygen demand (COD) and solids fractionation and consequently on the carbonaceous and energy footprints of wastewater treatment processes. Using a simple rational procedure for COD and solids fraction quantification, we quantify the effects of varying fractions on CO2 and CO2-equivalent mass flows, process energy demand and energy recovery. Then we analysed two treatment plants with similar biological nutrient removal processes in two different climatic regions and quantified the net benefit of gravity separation before biological treatment. In the cases analysed, primary settling increases the solid fraction of COD that is processed in anaerobic digestion, with an associated increase in biogas production and energy recovery, and a reduction in overall emissions of CO2 and CO2-equivalent from power importation.


Asunto(s)
Huella de Carbono , Precipitación Química , Conservación de los Recursos Energéticos/métodos , Eliminación de Residuos Líquidos/métodos , Carbono/química , Análisis de Componente Principal
16.
Chemosphere ; 307(Pt 3): 135997, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35987266

RESUMEN

Hydrothermal carbonization (HTC) is emerging as a promising technology for the management of sewage sludge. The fate of phytosanitary products, Polycyclic aromatic hydrocarbons (PAHs) and PCBs (Polychlorinated biphenyls) after HTC, as well as the formation of dioxins and furans, is still unclear. Moreover, only little information is available on the distribution of heavy metals and major nutrients between the hydrochars and the process water. Here, we aim to contribute to fill these gaps. HTC of sewage sludge from six different wastewater treatment plants has been carried out at 220 °C for 85 min. Feedstock, hydrochars and spent liquor have been then characterized and discussed. HTC is here proven to be a suitable technology for the immobilization of both heavy hydrocarbons and heavy metals, with the exception arsenic, which was also found in the spent liquor at a significant proportion (∼15-∼50%). DDD, DDT, DDE were detected in all sludge samples and their content was reduced by nearly one order of magnitude after the process. HTC is here proven to not be responsible at an appreciable extent of PCBs enrichment of the processed solids. Moreover, the sum of PCDDs and PCDFs in hydrochars never exceeded 20 ng kg-1 s.s. The results obtained encourage further developing of HTC, with the aim to improve the sustainability of sewage sludge management. Additional studies on the environmental impact of hydrochar when used as alternative fuel, as well as soil amendment, could lead to the overcoming of the issues which still hinder these applications.


Asunto(s)
Arsénico , Dioxinas , Metales Pesados , Plaguicidas , Bifenilos Policlorados , Hidrocarburos Policíclicos Aromáticos , Carbono , DDT , Diclorodifenil Dicloroetileno , Furanos , Aguas del Alcantarillado , Suelo , Temperatura , Agua
17.
Waste Manag ; 142: 9-18, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35158176

RESUMEN

Here we studied energy valorization of food waste by hydrothermal carbonization coupled with anaerobic digestion. Hydrothermal treatment was carried out at 200 °C and 230 °C for 1 h, obtaining hydrochar with properties suitable for solid biofuel according to ISO/TS 17225-8. The increase in temperature improved the fuel properties of hydrochar (higher heating value 20.3 and 23.7 MJ kg-1, fuel ratio 0.33 and 0.37, energy density 1.07 and 1.25). The anaerobic digestion of process water achieved methane yields around 150 mL CH4 STP g-1 CODadded and made it possible to remove some specific recalcitrant compounds, such as 2-methylpyridine and 2-ethyl-3-methylpyrazine. Energy recovery from hydrochar and process water seems to be an interesting alternative way to sustain the process energetically and economically, despite the significant energy inputs required for hydrothermal carbonization.


Asunto(s)
Alimentos , Eliminación de Residuos , Anaerobiosis , Biocombustibles , Carbono , Temperatura
18.
Environ Technol ; 42(24): 3783-3796, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32249698

RESUMEN

A two-stage biological process using fungi and bacteria was set-up and tested for treating a petrochemical wastewater containing naphthalene sulphonic acid polymers. The fungal treatment was carried out through a trickling filter inoculated with Pleurotus ostreatus attached on Luffa cylindrica acting as both physical support and carbon source. The fungal reactor was operated in non-sterile conditions setting two pH values (5 and 6) and two hydraulic retention times (2 d and 3 d). The effluent was then sent to an activated sludge reactor operating the second stage of the treatment. Using an HPLC-based technique, it was observed that the fungal reactor was capable of reducing the polymerization grade of naphthalene sulphonic acid polymers up to 35%, thus increasing significantly the biodegradability of the petrochemical wastewater, from the initial 9% to 46%. The two-stage process allowed to remove about 50% of the total COD much higher than 9% that can be achieved with activated sludge alone. The use of Luffa cylindrica as support for fungi allowed to limit bacterial contamination of the trickling filter and enhanced enzymatic production (on average 20 U/L of Laccase) without any release of non-biodegradable by-products in the effluent. Extraction and PCR-amplification of fungal DNA was carried out along with over 70 d running process in order to monitor the changes of the fungal community inside the reactors. Results showed that Meyerozyma, Fusarium and Thricoderma, spp. developed inside the reactor with Thricoderma, spp. representing the main constituent of fungal biomass at the end of the experiment.


Asunto(s)
Aguas del Alcantarillado , Aguas Residuales , Bacterias , Reactores Biológicos , Hongos
19.
Environ Sci Technol ; 44(21): 8223-9, 2010 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-20886831

RESUMEN

Two membrane bioreactors (MBRs) were operated at high sludge retention time (SRT) (between 30 and 75 d) in parallel to a conventional activated sludge plant (CASP) conducted at SRT = 10 d. The fate of linear alkylbenzene sulfonate (LAS), nonylphenol ethoxylates (NP(n)EO, n = 1-15), nonylphenoxy carboxylates (NP(n)EC, n = 1-2), and nonylphenol (NP) in these systems was investigated. All systems were very efficient in the removal of LAS (around 99%). The analysis of variance showed that the difference in the removal efficiency of LAS in the CASP and the MBR operated at SRT = 65-75 d (respectively 99.0 ± 0.43 and 99.8 ± 0.11) were significant (p < 0.05), confirming the importance of SRT in the removal of LAS. Comparison between the CASP and the MBRs in the removal efficiency of nonylphenolic compounds were conducted considering NP(3-15)EO, the sum of NP(1-15)EO, NP(1-2)EC, and nonylphenol (NP). In all cases MBRs were more efficient than the CASP. In the case of NP the removal was about 76 ± 7.5% for the CASP and 90% ± 12.1 and 82 ± 8.7% for the MBRs. Better performance of MBRs in the removal of nonylphenolic compounds can be attributed to a better degradation. For example, if the sum of NP(1-15)EO and NP(1-2)EC is considered, estimated biodegradation was about 48% for the CASP and 72% for MBRs.


Asunto(s)
Reactores Biológicos , Aguas del Alcantarillado/química , Tensoactivos/análisis , Eliminación de Residuos Líquidos , Contaminantes Químicos del Agua/análisis , Tensoactivos/metabolismo , Contaminantes Químicos del Agua/metabolismo
20.
Chemosphere ; 246: 125770, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31901665

RESUMEN

This paper presents the results of a composting lab-scale test carried out on Mater-Bi® film, a starch-based biopolymer. The test material is composed by starch, additives and polybutylene adipate terephthalate (PBAT). The test lasted for 45 days and was developed in three replicates under different temperature and moisture conditions, with the aim to assess the influence on Mater-Bi® degradation of less favourable composting conditions as short thermophilic phase, absence of moistening, and a combination of the two factors. The chemical nature and the morphology of the material and of its single components have been investigated before, during and at the end of the composting process, by means of different analytical techniques. ThermoGravimetric Analysis (TGA) allowed to obtain activation energy and weight loss; Fourier Transform InfraRed spectroscopy (FTIR) and Scanning Electron Microscopy (SEM) were used to study changes in the polymeric and morphological structure, and visual analysis provided information on the size of the Mater-Bi® particles. The results show that the biodegradation of PBAT is strongly influenced by the environmental conditions (temperature and moisture); on the contrary, in all the three replicates, both starch and additives are completely biodegraded within the first days of the process.


Asunto(s)
Biodegradación Ambiental , Compostaje , Microscopía Electrónica de Rastreo , Poliésteres , Polímeros , Espectroscopía Infrarroja por Transformada de Fourier , Almidón/química , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA